Properties

Label 2-43e2-1.1-c3-0-112
Degree $2$
Conductor $1849$
Sign $1$
Analytic cond. $109.094$
Root an. cond. $10.4448$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.84·2-s + 0.727·3-s − 4.59·4-s + 12.1·5-s − 1.34·6-s − 17.8·7-s + 23.2·8-s − 26.4·9-s − 22.4·10-s + 16.9·11-s − 3.34·12-s − 51.5·13-s + 32.9·14-s + 8.84·15-s − 6.07·16-s + 120.·17-s + 48.8·18-s − 5.77·19-s − 55.9·20-s − 12.9·21-s − 31.3·22-s + 210.·23-s + 16.9·24-s + 22.8·25-s + 95.0·26-s − 38.9·27-s + 82.0·28-s + ⋯
L(s)  = 1  − 0.652·2-s + 0.140·3-s − 0.574·4-s + 1.08·5-s − 0.0913·6-s − 0.963·7-s + 1.02·8-s − 0.980·9-s − 0.709·10-s + 0.465·11-s − 0.0804·12-s − 1.09·13-s + 0.628·14-s + 0.152·15-s − 0.0949·16-s + 1.72·17-s + 0.639·18-s − 0.0697·19-s − 0.624·20-s − 0.134·21-s − 0.303·22-s + 1.90·23-s + 0.143·24-s + 0.182·25-s + 0.716·26-s − 0.277·27-s + 0.553·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1849\)    =    \(43^{2}\)
Sign: $1$
Analytic conductor: \(109.094\)
Root analytic conductor: \(10.4448\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1849,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.100085813\)
\(L(\frac12)\) \(\approx\) \(1.100085813\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 + 1.84T + 8T^{2} \)
3 \( 1 - 0.727T + 27T^{2} \)
5 \( 1 - 12.1T + 125T^{2} \)
7 \( 1 + 17.8T + 343T^{2} \)
11 \( 1 - 16.9T + 1.33e3T^{2} \)
13 \( 1 + 51.5T + 2.19e3T^{2} \)
17 \( 1 - 120.T + 4.91e3T^{2} \)
19 \( 1 + 5.77T + 6.85e3T^{2} \)
23 \( 1 - 210.T + 1.21e4T^{2} \)
29 \( 1 + 12.4T + 2.43e4T^{2} \)
31 \( 1 + 189.T + 2.97e4T^{2} \)
37 \( 1 + 297.T + 5.06e4T^{2} \)
41 \( 1 + 233.T + 6.89e4T^{2} \)
47 \( 1 + 92.4T + 1.03e5T^{2} \)
53 \( 1 - 456.T + 1.48e5T^{2} \)
59 \( 1 + 137.T + 2.05e5T^{2} \)
61 \( 1 - 190.T + 2.26e5T^{2} \)
67 \( 1 - 608.T + 3.00e5T^{2} \)
71 \( 1 - 62.4T + 3.57e5T^{2} \)
73 \( 1 - 564.T + 3.89e5T^{2} \)
79 \( 1 + 17.5T + 4.93e5T^{2} \)
83 \( 1 + 865.T + 5.71e5T^{2} \)
89 \( 1 - 1.05e3T + 7.04e5T^{2} \)
97 \( 1 + 339.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.132133605897125245947396082056, −8.337206193549453647581276965717, −7.34740086624543874184670802351, −6.63572505034376283259720957033, −5.38593575948155311569335746910, −5.27470370807550461903520678113, −3.66140936032268083594898707023, −2.89945042071412760267683175387, −1.69587992194554997920748684777, −0.54551140686739750006272621768, 0.54551140686739750006272621768, 1.69587992194554997920748684777, 2.89945042071412760267683175387, 3.66140936032268083594898707023, 5.27470370807550461903520678113, 5.38593575948155311569335746910, 6.63572505034376283259720957033, 7.34740086624543874184670802351, 8.337206193549453647581276965717, 9.132133605897125245947396082056

Graph of the $Z$-function along the critical line