Properties

Label 2-43e2-1.1-c3-0-30
Degree $2$
Conductor $1849$
Sign $1$
Analytic cond. $109.094$
Root an. cond. $10.4448$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.79·2-s − 3.62·3-s + 6.43·4-s − 1.22·5-s − 13.7·6-s − 33.4·7-s − 5.93·8-s − 13.8·9-s − 4.66·10-s − 33.6·11-s − 23.3·12-s − 20.9·13-s − 127.·14-s + 4.45·15-s − 74.0·16-s + 84.6·17-s − 52.6·18-s − 40.5·19-s − 7.90·20-s + 121.·21-s − 127.·22-s − 67.6·23-s + 21.5·24-s − 123.·25-s − 79.5·26-s + 148.·27-s − 215.·28-s + ⋯
L(s)  = 1  + 1.34·2-s − 0.697·3-s + 0.804·4-s − 0.109·5-s − 0.937·6-s − 1.80·7-s − 0.262·8-s − 0.513·9-s − 0.147·10-s − 0.922·11-s − 0.561·12-s − 0.446·13-s − 2.42·14-s + 0.0766·15-s − 1.15·16-s + 1.20·17-s − 0.689·18-s − 0.489·19-s − 0.0883·20-s + 1.26·21-s − 1.23·22-s − 0.613·23-s + 0.182·24-s − 0.987·25-s − 0.599·26-s + 1.05·27-s − 1.45·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1849\)    =    \(43^{2}\)
Sign: $1$
Analytic conductor: \(109.094\)
Root analytic conductor: \(10.4448\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1849,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3758876099\)
\(L(\frac12)\) \(\approx\) \(0.3758876099\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 - 3.79T + 8T^{2} \)
3 \( 1 + 3.62T + 27T^{2} \)
5 \( 1 + 1.22T + 125T^{2} \)
7 \( 1 + 33.4T + 343T^{2} \)
11 \( 1 + 33.6T + 1.33e3T^{2} \)
13 \( 1 + 20.9T + 2.19e3T^{2} \)
17 \( 1 - 84.6T + 4.91e3T^{2} \)
19 \( 1 + 40.5T + 6.85e3T^{2} \)
23 \( 1 + 67.6T + 1.21e4T^{2} \)
29 \( 1 + 176.T + 2.43e4T^{2} \)
31 \( 1 + 89.1T + 2.97e4T^{2} \)
37 \( 1 - 147.T + 5.06e4T^{2} \)
41 \( 1 + 216.T + 6.89e4T^{2} \)
47 \( 1 + 354.T + 1.03e5T^{2} \)
53 \( 1 - 453.T + 1.48e5T^{2} \)
59 \( 1 - 285.T + 2.05e5T^{2} \)
61 \( 1 + 810.T + 2.26e5T^{2} \)
67 \( 1 - 901.T + 3.00e5T^{2} \)
71 \( 1 + 707.T + 3.57e5T^{2} \)
73 \( 1 + 849.T + 3.89e5T^{2} \)
79 \( 1 - 179.T + 4.93e5T^{2} \)
83 \( 1 - 554.T + 5.71e5T^{2} \)
89 \( 1 - 1.35e3T + 7.04e5T^{2} \)
97 \( 1 + 1.47e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.027987327347907249642669826465, −7.85668095284822977670147065625, −6.94119307771114923136540953670, −6.02934436100576059339914660887, −5.76859661456916768589832594520, −4.97598927653759091830504535700, −3.81398847567630528491018394006, −3.22739766217802719097307983489, −2.37493779039270468969132167772, −0.22079917053153783322207183017, 0.22079917053153783322207183017, 2.37493779039270468969132167772, 3.22739766217802719097307983489, 3.81398847567630528491018394006, 4.97598927653759091830504535700, 5.76859661456916768589832594520, 6.02934436100576059339914660887, 6.94119307771114923136540953670, 7.85668095284822977670147065625, 9.027987327347907249642669826465

Graph of the $Z$-function along the critical line