Properties

Label 2-43e2-1.1-c3-0-45
Degree $2$
Conductor $1849$
Sign $1$
Analytic cond. $109.094$
Root an. cond. $10.4448$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.55·2-s − 0.389·3-s + 4.66·4-s − 1.72·5-s + 1.38·6-s − 21.1·7-s + 11.8·8-s − 26.8·9-s + 6.14·10-s + 23.7·11-s − 1.81·12-s − 30.1·13-s + 75.3·14-s + 0.672·15-s − 79.5·16-s + 51.6·17-s + 95.5·18-s + 29.2·19-s − 8.05·20-s + 8.24·21-s − 84.5·22-s − 93.4·23-s − 4.62·24-s − 122.·25-s + 107.·26-s + 20.9·27-s − 98.7·28-s + ⋯
L(s)  = 1  − 1.25·2-s − 0.0748·3-s + 0.582·4-s − 0.154·5-s + 0.0942·6-s − 1.14·7-s + 0.524·8-s − 0.994·9-s + 0.194·10-s + 0.650·11-s − 0.0436·12-s − 0.643·13-s + 1.43·14-s + 0.0115·15-s − 1.24·16-s + 0.737·17-s + 1.25·18-s + 0.353·19-s − 0.0900·20-s + 0.0856·21-s − 0.818·22-s − 0.847·23-s − 0.0393·24-s − 0.976·25-s + 0.810·26-s + 0.149·27-s − 0.666·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1849\)    =    \(43^{2}\)
Sign: $1$
Analytic conductor: \(109.094\)
Root analytic conductor: \(10.4448\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1849,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2213417060\)
\(L(\frac12)\) \(\approx\) \(0.2213417060\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 + 3.55T + 8T^{2} \)
3 \( 1 + 0.389T + 27T^{2} \)
5 \( 1 + 1.72T + 125T^{2} \)
7 \( 1 + 21.1T + 343T^{2} \)
11 \( 1 - 23.7T + 1.33e3T^{2} \)
13 \( 1 + 30.1T + 2.19e3T^{2} \)
17 \( 1 - 51.6T + 4.91e3T^{2} \)
19 \( 1 - 29.2T + 6.85e3T^{2} \)
23 \( 1 + 93.4T + 1.21e4T^{2} \)
29 \( 1 + 59.6T + 2.43e4T^{2} \)
31 \( 1 - 113.T + 2.97e4T^{2} \)
37 \( 1 - 68.6T + 5.06e4T^{2} \)
41 \( 1 - 53.9T + 6.89e4T^{2} \)
47 \( 1 + 455.T + 1.03e5T^{2} \)
53 \( 1 + 662.T + 1.48e5T^{2} \)
59 \( 1 + 457.T + 2.05e5T^{2} \)
61 \( 1 + 606.T + 2.26e5T^{2} \)
67 \( 1 + 428.T + 3.00e5T^{2} \)
71 \( 1 + 139.T + 3.57e5T^{2} \)
73 \( 1 - 481.T + 3.89e5T^{2} \)
79 \( 1 - 1.10e3T + 4.93e5T^{2} \)
83 \( 1 + 1.25e3T + 5.71e5T^{2} \)
89 \( 1 - 624.T + 7.04e5T^{2} \)
97 \( 1 - 1.12e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.124985028016210205224868040588, −8.034584550555362548598262814731, −7.69506765170852701767380528471, −6.56742151649755055837453146199, −6.00664888263662529412495569071, −4.84451085095217154429109685643, −3.69339809432795338971851987004, −2.79499945105508193691854945327, −1.55253354341545104181203428241, −0.27035579450452965897494216337, 0.27035579450452965897494216337, 1.55253354341545104181203428241, 2.79499945105508193691854945327, 3.69339809432795338971851987004, 4.84451085095217154429109685643, 6.00664888263662529412495569071, 6.56742151649755055837453146199, 7.69506765170852701767380528471, 8.034584550555362548598262814731, 9.124985028016210205224868040588

Graph of the $Z$-function along the critical line