Properties

Label 6-43e6-1.1-c1e3-0-0
Degree $6$
Conductor $6321363049$
Sign $1$
Analytic cond. $3218.41$
Root an. cond. $3.84243$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 3·4-s − 2·5-s + 6-s + 4·8-s − 6·9-s + 2·10-s + 2·11-s + 3·12-s − 13-s + 2·15-s + 3·16-s − 2·17-s + 6·18-s + 13·19-s + 6·20-s − 2·22-s − 3·23-s − 4·24-s − 10·25-s + 26-s + 8·27-s + 18·29-s − 2·30-s + 11·31-s − 6·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 3/2·4-s − 0.894·5-s + 0.408·6-s + 1.41·8-s − 2·9-s + 0.632·10-s + 0.603·11-s + 0.866·12-s − 0.277·13-s + 0.516·15-s + 3/4·16-s − 0.485·17-s + 1.41·18-s + 2.98·19-s + 1.34·20-s − 0.426·22-s − 0.625·23-s − 0.816·24-s − 2·25-s + 0.196·26-s + 1.53·27-s + 3.34·29-s − 0.365·30-s + 1.97·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(43^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(43^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(43^{6}\)
Sign: $1$
Analytic conductor: \(3218.41\)
Root analytic conductor: \(3.84243\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 43^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6685034769\)
\(L(\frac12)\) \(\approx\) \(0.6685034769\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad43 \( 1 \)
good2$A_4\times C_2$ \( 1 + T + p^{2} T^{2} + 3 T^{3} + p^{3} T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
3$A_4\times C_2$ \( 1 + T + 7 T^{2} + 5 T^{3} + 7 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
5$A_4\times C_2$ \( 1 + 2 T + 14 T^{2} + 19 T^{3} + 14 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
7$A_4\times C_2$ \( 1 + 2 p T^{2} - p T^{3} + 2 p^{2} T^{4} + p^{3} T^{6} \)
11$A_4\times C_2$ \( 1 - 2 T + 18 T^{2} - 57 T^{3} + 18 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
13$A_4\times C_2$ \( 1 + T + 9 T^{2} + 67 T^{3} + 9 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 + 2 T + 43 T^{2} + 60 T^{3} + 43 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 - 13 T + 111 T^{2} - 565 T^{3} + 111 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 + 3 T + 44 T^{2} + 55 T^{3} + 44 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{3} \)
31$A_4\times C_2$ \( 1 - 11 T + 47 T^{2} - 135 T^{3} + 47 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 7 T + 97 T^{2} - 427 T^{3} + 97 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 - 22 T + 275 T^{2} - 52 p T^{3} + 275 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 + 23 T + 301 T^{2} + 2469 T^{3} + 301 p T^{4} + 23 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 - 6 T + 108 T^{2} - 707 T^{3} + 108 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 + 8 T + 182 T^{2} + 943 T^{3} + 182 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 + 6 T + 167 T^{2} + 740 T^{3} + 167 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 12 T + 221 T^{2} - 1504 T^{3} + 221 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 22 T + 309 T^{2} - 3228 T^{3} + 309 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 - 15 T + 245 T^{2} - 2119 T^{3} + 245 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 10 T + 254 T^{2} + 1581 T^{3} + 254 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 + 4 T + 154 T^{2} + 9 p T^{3} + 154 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 + 2 T + 112 T^{2} + 579 T^{3} + 112 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 + 21 T + 347 T^{2} + 3577 T^{3} + 347 p T^{4} + 21 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.338906641868561516316533859195, −7.923011725876952771073731127613, −7.81698743367539954901972329680, −7.77494686559317854283764393927, −7.37692648358527437884318697690, −6.67043765492159671967928505318, −6.49264706546436716596580184498, −6.46206055683122965932303134810, −5.95612042529863387173062281709, −5.90988370336443668837317880771, −5.26307996422272041614928370399, −5.16625062277484521195012928593, −5.03729536728359239158677515489, −4.43093079687699160127310534176, −4.40279779028563590865029681150, −4.19915599037581549161596894791, −3.68433833529564192528452710165, −3.17905533826100351543722360593, −3.00123712922808238790919492155, −2.91509849934404604267717942191, −2.28566201773003561363661374490, −1.71957703631108711214885126995, −0.879967975859371124733281420881, −0.73963652845832953910809386062, −0.46127665438387725214585069244, 0.46127665438387725214585069244, 0.73963652845832953910809386062, 0.879967975859371124733281420881, 1.71957703631108711214885126995, 2.28566201773003561363661374490, 2.91509849934404604267717942191, 3.00123712922808238790919492155, 3.17905533826100351543722360593, 3.68433833529564192528452710165, 4.19915599037581549161596894791, 4.40279779028563590865029681150, 4.43093079687699160127310534176, 5.03729536728359239158677515489, 5.16625062277484521195012928593, 5.26307996422272041614928370399, 5.90988370336443668837317880771, 5.95612042529863387173062281709, 6.46206055683122965932303134810, 6.49264706546436716596580184498, 6.67043765492159671967928505318, 7.37692648358527437884318697690, 7.77494686559317854283764393927, 7.81698743367539954901972329680, 7.923011725876952771073731127613, 8.338906641868561516316533859195

Graph of the $Z$-function along the critical line