Properties

Label 2-1840-1.1-c3-0-81
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.97·3-s + 5·5-s + 18.7·7-s − 2.27·9-s + 37.3·11-s + 70.5·13-s + 24.8·15-s + 72.1·17-s − 81.3·19-s + 93.0·21-s + 23·23-s + 25·25-s − 145.·27-s − 6.07·29-s + 276.·31-s + 185.·33-s + 93.5·35-s − 25.3·37-s + 350.·39-s + 169.·41-s − 141.·43-s − 11.3·45-s + 239.·47-s + 7.01·49-s + 358.·51-s − 151.·53-s + 186.·55-s + ⋯
L(s)  = 1  + 0.956·3-s + 0.447·5-s + 1.01·7-s − 0.0842·9-s + 1.02·11-s + 1.50·13-s + 0.427·15-s + 1.02·17-s − 0.982·19-s + 0.966·21-s + 0.208·23-s + 0.200·25-s − 1.03·27-s − 0.0388·29-s + 1.59·31-s + 0.979·33-s + 0.451·35-s − 0.112·37-s + 1.44·39-s + 0.645·41-s − 0.500·43-s − 0.0376·45-s + 0.742·47-s + 0.0204·49-s + 0.984·51-s − 0.393·53-s + 0.457·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.789909861\)
\(L(\frac12)\) \(\approx\) \(4.789909861\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 - 23T \)
good3 \( 1 - 4.97T + 27T^{2} \)
7 \( 1 - 18.7T + 343T^{2} \)
11 \( 1 - 37.3T + 1.33e3T^{2} \)
13 \( 1 - 70.5T + 2.19e3T^{2} \)
17 \( 1 - 72.1T + 4.91e3T^{2} \)
19 \( 1 + 81.3T + 6.85e3T^{2} \)
29 \( 1 + 6.07T + 2.43e4T^{2} \)
31 \( 1 - 276.T + 2.97e4T^{2} \)
37 \( 1 + 25.3T + 5.06e4T^{2} \)
41 \( 1 - 169.T + 6.89e4T^{2} \)
43 \( 1 + 141.T + 7.95e4T^{2} \)
47 \( 1 - 239.T + 1.03e5T^{2} \)
53 \( 1 + 151.T + 1.48e5T^{2} \)
59 \( 1 + 800.T + 2.05e5T^{2} \)
61 \( 1 - 164.T + 2.26e5T^{2} \)
67 \( 1 - 488.T + 3.00e5T^{2} \)
71 \( 1 + 248.T + 3.57e5T^{2} \)
73 \( 1 + 729.T + 3.89e5T^{2} \)
79 \( 1 + 907.T + 4.93e5T^{2} \)
83 \( 1 - 1.18e3T + 5.71e5T^{2} \)
89 \( 1 + 1.05e3T + 7.04e5T^{2} \)
97 \( 1 - 599.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.678588706178038507883966242830, −8.368668479530918208130792405029, −7.55635848028793907838117599050, −6.38600502304364862274514435820, −5.83511134285886323507824774326, −4.64797710253682654197896215874, −3.80609299423795150932461897951, −2.93848302721001219361121066054, −1.81213387748317740276048556267, −1.09094012821478903857989931933, 1.09094012821478903857989931933, 1.81213387748317740276048556267, 2.93848302721001219361121066054, 3.80609299423795150932461897951, 4.64797710253682654197896215874, 5.83511134285886323507824774326, 6.38600502304364862274514435820, 7.55635848028793907838117599050, 8.368668479530918208130792405029, 8.678588706178038507883966242830

Graph of the $Z$-function along the critical line