Properties

Label 2-1840-1.1-c3-0-7
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.32·3-s + 5·5-s − 13.2·7-s − 25.2·9-s − 15.3·11-s − 80.8·13-s − 6.62·15-s − 25.5·17-s − 151.·19-s + 17.5·21-s + 23·23-s + 25·25-s + 69.2·27-s − 271.·29-s + 111.·31-s + 20.3·33-s − 66.1·35-s − 355.·37-s + 107.·39-s + 196.·41-s + 248.·43-s − 126.·45-s + 247.·47-s − 167.·49-s + 33.9·51-s + 238.·53-s − 76.8·55-s + ⋯
L(s)  = 1  − 0.254·3-s + 0.447·5-s − 0.714·7-s − 0.934·9-s − 0.421·11-s − 1.72·13-s − 0.114·15-s − 0.365·17-s − 1.82·19-s + 0.182·21-s + 0.208·23-s + 0.200·25-s + 0.493·27-s − 1.73·29-s + 0.647·31-s + 0.107·33-s − 0.319·35-s − 1.57·37-s + 0.439·39-s + 0.749·41-s + 0.879·43-s − 0.418·45-s + 0.769·47-s − 0.489·49-s + 0.0931·51-s + 0.617·53-s − 0.188·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4630766140\)
\(L(\frac12)\) \(\approx\) \(0.4630766140\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 - 23T \)
good3 \( 1 + 1.32T + 27T^{2} \)
7 \( 1 + 13.2T + 343T^{2} \)
11 \( 1 + 15.3T + 1.33e3T^{2} \)
13 \( 1 + 80.8T + 2.19e3T^{2} \)
17 \( 1 + 25.5T + 4.91e3T^{2} \)
19 \( 1 + 151.T + 6.85e3T^{2} \)
29 \( 1 + 271.T + 2.43e4T^{2} \)
31 \( 1 - 111.T + 2.97e4T^{2} \)
37 \( 1 + 355.T + 5.06e4T^{2} \)
41 \( 1 - 196.T + 6.89e4T^{2} \)
43 \( 1 - 248.T + 7.95e4T^{2} \)
47 \( 1 - 247.T + 1.03e5T^{2} \)
53 \( 1 - 238.T + 1.48e5T^{2} \)
59 \( 1 + 39.8T + 2.05e5T^{2} \)
61 \( 1 - 643.T + 2.26e5T^{2} \)
67 \( 1 + 349.T + 3.00e5T^{2} \)
71 \( 1 + 355.T + 3.57e5T^{2} \)
73 \( 1 - 691.T + 3.89e5T^{2} \)
79 \( 1 - 1.03e3T + 4.93e5T^{2} \)
83 \( 1 - 480.T + 5.71e5T^{2} \)
89 \( 1 + 585.T + 7.04e5T^{2} \)
97 \( 1 + 1.08e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.026061487708408989022976887126, −8.151922234126625870250121660370, −7.18060873499488964694166380560, −6.48846437875665065587305499270, −5.65585666666096899706898528440, −4.98800565452833424998474034837, −3.91961493031686679399789513793, −2.67914357935652659607440031123, −2.15700256942121628592465955769, −0.29589168698378361891305285881, 0.29589168698378361891305285881, 2.15700256942121628592465955769, 2.67914357935652659607440031123, 3.91961493031686679399789513793, 4.98800565452833424998474034837, 5.65585666666096899706898528440, 6.48846437875665065587305499270, 7.18060873499488964694166380560, 8.151922234126625870250121660370, 9.026061487708408989022976887126

Graph of the $Z$-function along the critical line