Properties

Label 2-1840-1.1-c3-0-112
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.2·3-s + 5·5-s + 33.8·7-s + 77.4·9-s + 21.0·11-s + 32.8·13-s + 51.0·15-s − 28.7·17-s − 67.2·19-s + 346.·21-s − 23·23-s + 25·25-s + 515.·27-s − 199.·29-s − 2.47·31-s + 214.·33-s + 169.·35-s − 173.·37-s + 335.·39-s + 200.·41-s − 198.·43-s + 387.·45-s − 33.4·47-s + 803.·49-s − 293.·51-s + 556.·53-s + 105.·55-s + ⋯
L(s)  = 1  + 1.96·3-s + 0.447·5-s + 1.82·7-s + 2.86·9-s + 0.576·11-s + 0.701·13-s + 0.879·15-s − 0.409·17-s − 0.812·19-s + 3.59·21-s − 0.208·23-s + 0.200·25-s + 3.67·27-s − 1.28·29-s − 0.0143·31-s + 1.13·33-s + 0.817·35-s − 0.771·37-s + 1.37·39-s + 0.763·41-s − 0.704·43-s + 1.28·45-s − 0.103·47-s + 2.34·49-s − 0.806·51-s + 1.44·53-s + 0.257·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.406897967\)
\(L(\frac12)\) \(\approx\) \(7.406897967\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 + 23T \)
good3 \( 1 - 10.2T + 27T^{2} \)
7 \( 1 - 33.8T + 343T^{2} \)
11 \( 1 - 21.0T + 1.33e3T^{2} \)
13 \( 1 - 32.8T + 2.19e3T^{2} \)
17 \( 1 + 28.7T + 4.91e3T^{2} \)
19 \( 1 + 67.2T + 6.85e3T^{2} \)
29 \( 1 + 199.T + 2.43e4T^{2} \)
31 \( 1 + 2.47T + 2.97e4T^{2} \)
37 \( 1 + 173.T + 5.06e4T^{2} \)
41 \( 1 - 200.T + 6.89e4T^{2} \)
43 \( 1 + 198.T + 7.95e4T^{2} \)
47 \( 1 + 33.4T + 1.03e5T^{2} \)
53 \( 1 - 556.T + 1.48e5T^{2} \)
59 \( 1 + 234.T + 2.05e5T^{2} \)
61 \( 1 - 26.2T + 2.26e5T^{2} \)
67 \( 1 + 190.T + 3.00e5T^{2} \)
71 \( 1 + 745.T + 3.57e5T^{2} \)
73 \( 1 + 742.T + 3.89e5T^{2} \)
79 \( 1 + 715.T + 4.93e5T^{2} \)
83 \( 1 + 766.T + 5.71e5T^{2} \)
89 \( 1 + 683.T + 7.04e5T^{2} \)
97 \( 1 + 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.688986438694964532857457116266, −8.372775729907737059427026583539, −7.54696558381632082315214552157, −6.85946343584779667725133395892, −5.57314245554772193525656760322, −4.37298369289658383907652502022, −4.00053476849062388606329600381, −2.76763016875216247281196840499, −1.79685773660640765526976776014, −1.45372833836443366349240705649, 1.45372833836443366349240705649, 1.79685773660640765526976776014, 2.76763016875216247281196840499, 4.00053476849062388606329600381, 4.37298369289658383907652502022, 5.57314245554772193525656760322, 6.85946343584779667725133395892, 7.54696558381632082315214552157, 8.372775729907737059427026583539, 8.688986438694964532857457116266

Graph of the $Z$-function along the critical line