Properties

Label 2-1840-1.1-c3-0-51
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.21·3-s + 5·5-s + 19.9·7-s − 9.20·9-s − 0.532·11-s − 41.4·13-s + 21.0·15-s + 60.4·17-s − 69.0·19-s + 83.9·21-s − 23·23-s + 25·25-s − 152.·27-s + 109.·29-s + 128.·31-s − 2.24·33-s + 99.5·35-s + 139.·37-s − 174.·39-s + 488.·41-s + 197.·43-s − 46.0·45-s − 447.·47-s + 53.3·49-s + 254.·51-s + 420.·53-s − 2.66·55-s + ⋯
L(s)  = 1  + 0.811·3-s + 0.447·5-s + 1.07·7-s − 0.340·9-s − 0.0145·11-s − 0.883·13-s + 0.363·15-s + 0.861·17-s − 0.834·19-s + 0.872·21-s − 0.208·23-s + 0.200·25-s − 1.08·27-s + 0.703·29-s + 0.744·31-s − 0.0118·33-s + 0.480·35-s + 0.619·37-s − 0.717·39-s + 1.86·41-s + 0.700·43-s − 0.152·45-s − 1.38·47-s + 0.155·49-s + 0.699·51-s + 1.09·53-s − 0.00652·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.596370819\)
\(L(\frac12)\) \(\approx\) \(3.596370819\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 + 23T \)
good3 \( 1 - 4.21T + 27T^{2} \)
7 \( 1 - 19.9T + 343T^{2} \)
11 \( 1 + 0.532T + 1.33e3T^{2} \)
13 \( 1 + 41.4T + 2.19e3T^{2} \)
17 \( 1 - 60.4T + 4.91e3T^{2} \)
19 \( 1 + 69.0T + 6.85e3T^{2} \)
29 \( 1 - 109.T + 2.43e4T^{2} \)
31 \( 1 - 128.T + 2.97e4T^{2} \)
37 \( 1 - 139.T + 5.06e4T^{2} \)
41 \( 1 - 488.T + 6.89e4T^{2} \)
43 \( 1 - 197.T + 7.95e4T^{2} \)
47 \( 1 + 447.T + 1.03e5T^{2} \)
53 \( 1 - 420.T + 1.48e5T^{2} \)
59 \( 1 - 728.T + 2.05e5T^{2} \)
61 \( 1 - 528.T + 2.26e5T^{2} \)
67 \( 1 - 300.T + 3.00e5T^{2} \)
71 \( 1 + 593.T + 3.57e5T^{2} \)
73 \( 1 - 996.T + 3.89e5T^{2} \)
79 \( 1 - 3.39T + 4.93e5T^{2} \)
83 \( 1 - 1.03e3T + 5.71e5T^{2} \)
89 \( 1 + 261.T + 7.04e5T^{2} \)
97 \( 1 - 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.785065618401374466027318634290, −8.091377875926839708842874585849, −7.64442874969564633565220053280, −6.52222308143676618328130985625, −5.58120539636607569501448738229, −4.81676356862520841792686076212, −3.88007775258642385120912708847, −2.65850305039670375424294482375, −2.13714247094967952376546626788, −0.860763009186747042563098181198, 0.860763009186747042563098181198, 2.13714247094967952376546626788, 2.65850305039670375424294482375, 3.88007775258642385120912708847, 4.81676356862520841792686076212, 5.58120539636607569501448738229, 6.52222308143676618328130985625, 7.64442874969564633565220053280, 8.091377875926839708842874585849, 8.785065618401374466027318634290

Graph of the $Z$-function along the critical line