Properties

Label 2-1840-1.1-c3-0-29
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0181·3-s + 5·5-s − 10.0·7-s − 26.9·9-s − 32.0·11-s + 58.3·13-s + 0.0908·15-s + 49.3·17-s − 70.7·19-s − 0.183·21-s − 23·23-s + 25·25-s − 0.980·27-s − 25.9·29-s − 144.·31-s − 0.582·33-s − 50.4·35-s + 7.35·37-s + 1.05·39-s + 151.·41-s + 245.·43-s − 134.·45-s + 123.·47-s − 241.·49-s + 0.896·51-s − 251.·53-s − 160.·55-s + ⋯
L(s)  = 1  + 0.00349·3-s + 0.447·5-s − 0.544·7-s − 0.999·9-s − 0.878·11-s + 1.24·13-s + 0.00156·15-s + 0.703·17-s − 0.853·19-s − 0.00190·21-s − 0.208·23-s + 0.200·25-s − 0.00699·27-s − 0.165·29-s − 0.838·31-s − 0.00307·33-s − 0.243·35-s + 0.0326·37-s + 0.00434·39-s + 0.578·41-s + 0.872·43-s − 0.447·45-s + 0.382·47-s − 0.703·49-s + 0.00246·51-s − 0.650·53-s − 0.392·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.609472179\)
\(L(\frac12)\) \(\approx\) \(1.609472179\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 + 23T \)
good3 \( 1 - 0.0181T + 27T^{2} \)
7 \( 1 + 10.0T + 343T^{2} \)
11 \( 1 + 32.0T + 1.33e3T^{2} \)
13 \( 1 - 58.3T + 2.19e3T^{2} \)
17 \( 1 - 49.3T + 4.91e3T^{2} \)
19 \( 1 + 70.7T + 6.85e3T^{2} \)
29 \( 1 + 25.9T + 2.43e4T^{2} \)
31 \( 1 + 144.T + 2.97e4T^{2} \)
37 \( 1 - 7.35T + 5.06e4T^{2} \)
41 \( 1 - 151.T + 6.89e4T^{2} \)
43 \( 1 - 245.T + 7.95e4T^{2} \)
47 \( 1 - 123.T + 1.03e5T^{2} \)
53 \( 1 + 251.T + 1.48e5T^{2} \)
59 \( 1 + 271.T + 2.05e5T^{2} \)
61 \( 1 + 49.9T + 2.26e5T^{2} \)
67 \( 1 - 602.T + 3.00e5T^{2} \)
71 \( 1 + 513.T + 3.57e5T^{2} \)
73 \( 1 - 403.T + 3.89e5T^{2} \)
79 \( 1 + 284.T + 4.93e5T^{2} \)
83 \( 1 + 300.T + 5.71e5T^{2} \)
89 \( 1 - 672.T + 7.04e5T^{2} \)
97 \( 1 - 1.07e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870498058187985275259362365178, −8.207551189991280364160745918854, −7.38534899224613729221052567461, −6.13705629482101840890972325147, −5.94971122144707716159327318197, −4.95279586857505916758282004981, −3.71878758758768188515943516262, −2.95622444013472081082784267488, −1.95809157833503062367994309952, −0.57518495177276648831978686307, 0.57518495177276648831978686307, 1.95809157833503062367994309952, 2.95622444013472081082784267488, 3.71878758758768188515943516262, 4.95279586857505916758282004981, 5.94971122144707716159327318197, 6.13705629482101840890972325147, 7.38534899224613729221052567461, 8.207551189991280364160745918854, 8.870498058187985275259362365178

Graph of the $Z$-function along the critical line