Properties

Label 2-1840-1.1-c3-0-67
Degree $2$
Conductor $1840$
Sign $-1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.78·3-s − 5·5-s − 24.1·7-s − 19.2·9-s + 67.6·11-s − 28.9·13-s + 13.9·15-s − 42.0·17-s + 109.·19-s + 67.3·21-s − 23·23-s + 25·25-s + 128.·27-s − 220.·29-s − 130.·31-s − 188.·33-s + 120.·35-s + 223.·37-s + 80.6·39-s + 361.·41-s + 354.·43-s + 96.2·45-s − 313.·47-s + 242.·49-s + 117.·51-s + 323.·53-s − 338.·55-s + ⋯
L(s)  = 1  − 0.535·3-s − 0.447·5-s − 1.30·7-s − 0.712·9-s + 1.85·11-s − 0.617·13-s + 0.239·15-s − 0.600·17-s + 1.32·19-s + 0.700·21-s − 0.208·23-s + 0.200·25-s + 0.917·27-s − 1.41·29-s − 0.753·31-s − 0.994·33-s + 0.584·35-s + 0.994·37-s + 0.331·39-s + 1.37·41-s + 1.25·43-s + 0.318·45-s − 0.972·47-s + 0.707·49-s + 0.321·51-s + 0.837·53-s − 0.829·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
23 \( 1 + 23T \)
good3 \( 1 + 2.78T + 27T^{2} \)
7 \( 1 + 24.1T + 343T^{2} \)
11 \( 1 - 67.6T + 1.33e3T^{2} \)
13 \( 1 + 28.9T + 2.19e3T^{2} \)
17 \( 1 + 42.0T + 4.91e3T^{2} \)
19 \( 1 - 109.T + 6.85e3T^{2} \)
29 \( 1 + 220.T + 2.43e4T^{2} \)
31 \( 1 + 130.T + 2.97e4T^{2} \)
37 \( 1 - 223.T + 5.06e4T^{2} \)
41 \( 1 - 361.T + 6.89e4T^{2} \)
43 \( 1 - 354.T + 7.95e4T^{2} \)
47 \( 1 + 313.T + 1.03e5T^{2} \)
53 \( 1 - 323.T + 1.48e5T^{2} \)
59 \( 1 - 772.T + 2.05e5T^{2} \)
61 \( 1 - 350.T + 2.26e5T^{2} \)
67 \( 1 + 254.T + 3.00e5T^{2} \)
71 \( 1 - 297.T + 3.57e5T^{2} \)
73 \( 1 + 187.T + 3.89e5T^{2} \)
79 \( 1 + 690.T + 4.93e5T^{2} \)
83 \( 1 - 48.9T + 5.71e5T^{2} \)
89 \( 1 + 267.T + 7.04e5T^{2} \)
97 \( 1 + 602.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.703564856985091977906062727059, −7.47141700651799492641967516617, −6.86908971872111197616881407454, −6.10273359284602262961185367918, −5.46039513184575811468507215643, −4.18009547961842036849545186850, −3.55671015467560616689016475315, −2.53824597120655175506710748741, −0.985991722290076937342190312917, 0, 0.985991722290076937342190312917, 2.53824597120655175506710748741, 3.55671015467560616689016475315, 4.18009547961842036849545186850, 5.46039513184575811468507215643, 6.10273359284602262961185367918, 6.86908971872111197616881407454, 7.47141700651799492641967516617, 8.703564856985091977906062727059

Graph of the $Z$-function along the critical line