Properties

Label 2-1840-1.1-c3-0-13
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.72·3-s − 5·5-s − 11.8·7-s − 13.1·9-s − 64.0·11-s − 77.5·13-s − 18.6·15-s + 25.6·17-s − 51.4·19-s − 44.2·21-s + 23·23-s + 25·25-s − 149.·27-s + 68.3·29-s + 67.5·31-s − 238.·33-s + 59.3·35-s − 149.·37-s − 289.·39-s − 249.·41-s + 534.·43-s + 65.5·45-s − 141.·47-s − 202.·49-s + 95.5·51-s − 76.1·53-s + 320.·55-s + ⋯
L(s)  = 1  + 0.717·3-s − 0.447·5-s − 0.640·7-s − 0.485·9-s − 1.75·11-s − 1.65·13-s − 0.320·15-s + 0.365·17-s − 0.621·19-s − 0.459·21-s + 0.208·23-s + 0.200·25-s − 1.06·27-s + 0.437·29-s + 0.391·31-s − 1.25·33-s + 0.286·35-s − 0.663·37-s − 1.18·39-s − 0.951·41-s + 1.89·43-s + 0.217·45-s − 0.438·47-s − 0.589·49-s + 0.262·51-s − 0.197·53-s + 0.784·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7787849984\)
\(L(\frac12)\) \(\approx\) \(0.7787849984\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
23 \( 1 - 23T \)
good3 \( 1 - 3.72T + 27T^{2} \)
7 \( 1 + 11.8T + 343T^{2} \)
11 \( 1 + 64.0T + 1.33e3T^{2} \)
13 \( 1 + 77.5T + 2.19e3T^{2} \)
17 \( 1 - 25.6T + 4.91e3T^{2} \)
19 \( 1 + 51.4T + 6.85e3T^{2} \)
29 \( 1 - 68.3T + 2.43e4T^{2} \)
31 \( 1 - 67.5T + 2.97e4T^{2} \)
37 \( 1 + 149.T + 5.06e4T^{2} \)
41 \( 1 + 249.T + 6.89e4T^{2} \)
43 \( 1 - 534.T + 7.95e4T^{2} \)
47 \( 1 + 141.T + 1.03e5T^{2} \)
53 \( 1 + 76.1T + 1.48e5T^{2} \)
59 \( 1 - 816.T + 2.05e5T^{2} \)
61 \( 1 - 356.T + 2.26e5T^{2} \)
67 \( 1 - 671.T + 3.00e5T^{2} \)
71 \( 1 - 746.T + 3.57e5T^{2} \)
73 \( 1 + 162.T + 3.89e5T^{2} \)
79 \( 1 + 194.T + 4.93e5T^{2} \)
83 \( 1 + 246.T + 5.71e5T^{2} \)
89 \( 1 + 836.T + 7.04e5T^{2} \)
97 \( 1 + 53.5T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.746563136494355987553778269494, −8.082146647429873462742180433946, −7.51680820686752568841645671838, −6.69412032423101300365330604545, −5.48938155405196952396103773580, −4.89676075376555622008351438618, −3.70011865183593209073662464628, −2.74369280100729610905944360530, −2.35862327926274070842402398749, −0.36469104423109542783180348670, 0.36469104423109542783180348670, 2.35862327926274070842402398749, 2.74369280100729610905944360530, 3.70011865183593209073662464628, 4.89676075376555622008351438618, 5.48938155405196952396103773580, 6.69412032423101300365330604545, 7.51680820686752568841645671838, 8.082146647429873462742180433946, 8.746563136494355987553778269494

Graph of the $Z$-function along the critical line