Properties

Label 4-1840e2-1.1-c3e2-0-1
Degree $4$
Conductor $3385600$
Sign $1$
Analytic cond. $11786.0$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 10·5-s − 7-s − 20·9-s + 27·11-s − 15·13-s + 30·15-s − 79·17-s + 71·19-s − 3·21-s + 46·23-s + 75·25-s − 66·27-s − 430·29-s + 305·31-s + 81·33-s − 10·35-s − 68·37-s − 45·39-s − 593·41-s − 648·43-s − 200·45-s − 382·47-s − 4·49-s − 237·51-s − 464·53-s + 270·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 0.0539·7-s − 0.740·9-s + 0.740·11-s − 0.320·13-s + 0.516·15-s − 1.12·17-s + 0.857·19-s − 0.0311·21-s + 0.417·23-s + 3/5·25-s − 0.470·27-s − 2.75·29-s + 1.76·31-s + 0.427·33-s − 0.0482·35-s − 0.302·37-s − 0.184·39-s − 2.25·41-s − 2.29·43-s − 0.662·45-s − 1.18·47-s − 0.0116·49-s − 0.650·51-s − 1.20·53-s + 0.661·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3385600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3385600 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3385600\)    =    \(2^{8} \cdot 5^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(11786.0\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3385600,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p T )^{2} \)
23$C_1$ \( ( 1 - p T )^{2} \)
good3$D_{4}$ \( 1 - p T + 29 T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + T + 5 T^{2} + p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 27 T + 2163 T^{2} - 27 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 15 T + 4205 T^{2} + 15 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 79 T + 10051 T^{2} + 79 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 71 T + 10373 T^{2} - 71 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 430 T + 3182 p T^{2} + 430 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 305 T + 74963 T^{2} - 305 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 68 T + 81098 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 593 T + 222457 T^{2} + 593 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 648 T + 262246 T^{2} + 648 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 382 T + 94906 T^{2} + 382 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 464 T + 298822 T^{2} + 464 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 18 T + 331378 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 7 T + 365439 T^{2} + 7 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 60 T + 445030 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1029 T + 724137 T^{2} - 1029 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 74 T + 674654 T^{2} - 74 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 692 T + 299630 T^{2} + 692 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1460 T + 1111418 T^{2} - 1460 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 220 T + 539138 T^{2} + 220 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 1339 T + 1150631 T^{2} - 1339 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.701322903433158067702732273486, −8.446664525328461805884287895393, −7.83477707103550026783754075784, −7.77857940557318661660860604161, −6.82948420685838525052114826048, −6.75256284374257179793625771287, −6.44987532793061732214804910705, −5.96227740284524072450800879758, −5.24337541215581163018212446228, −5.13947727604961232461098502731, −4.79644507135832518064647568702, −3.98812111668178974093637321940, −3.41937363141524061153386990619, −3.33144155729714791004840405271, −2.57318259802550318513414176976, −2.21306781400563819729366918334, −1.56219620301046376305950213672, −1.29833349862638906188854664506, 0, 0, 1.29833349862638906188854664506, 1.56219620301046376305950213672, 2.21306781400563819729366918334, 2.57318259802550318513414176976, 3.33144155729714791004840405271, 3.41937363141524061153386990619, 3.98812111668178974093637321940, 4.79644507135832518064647568702, 5.13947727604961232461098502731, 5.24337541215581163018212446228, 5.96227740284524072450800879758, 6.44987532793061732214804910705, 6.75256284374257179793625771287, 6.82948420685838525052114826048, 7.77857940557318661660860604161, 7.83477707103550026783754075784, 8.446664525328461805884287895393, 8.701322903433158067702732273486

Graph of the $Z$-function along the critical line