Properties

Label 2-1840-1.1-c3-0-58
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66·3-s − 5·5-s + 32.5·7-s − 19.8·9-s + 51.2·11-s + 40.1·13-s + 13.3·15-s + 93.3·17-s + 61.9·19-s − 86.8·21-s − 23·23-s + 25·25-s + 125.·27-s − 160.·29-s + 295.·31-s − 136.·33-s − 162.·35-s + 401.·37-s − 107.·39-s + 310.·41-s − 506.·43-s + 99.4·45-s − 188.·47-s + 717.·49-s − 249.·51-s + 162.·53-s − 256.·55-s + ⋯
L(s)  = 1  − 0.513·3-s − 0.447·5-s + 1.75·7-s − 0.736·9-s + 1.40·11-s + 0.857·13-s + 0.229·15-s + 1.33·17-s + 0.747·19-s − 0.902·21-s − 0.208·23-s + 0.200·25-s + 0.891·27-s − 1.02·29-s + 1.71·31-s − 0.721·33-s − 0.786·35-s + 1.78·37-s − 0.440·39-s + 1.18·41-s − 1.79·43-s + 0.329·45-s − 0.584·47-s + 2.09·49-s − 0.683·51-s + 0.421·53-s − 0.628·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.671127500\)
\(L(\frac12)\) \(\approx\) \(2.671127500\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
23 \( 1 + 23T \)
good3 \( 1 + 2.66T + 27T^{2} \)
7 \( 1 - 32.5T + 343T^{2} \)
11 \( 1 - 51.2T + 1.33e3T^{2} \)
13 \( 1 - 40.1T + 2.19e3T^{2} \)
17 \( 1 - 93.3T + 4.91e3T^{2} \)
19 \( 1 - 61.9T + 6.85e3T^{2} \)
29 \( 1 + 160.T + 2.43e4T^{2} \)
31 \( 1 - 295.T + 2.97e4T^{2} \)
37 \( 1 - 401.T + 5.06e4T^{2} \)
41 \( 1 - 310.T + 6.89e4T^{2} \)
43 \( 1 + 506.T + 7.95e4T^{2} \)
47 \( 1 + 188.T + 1.03e5T^{2} \)
53 \( 1 - 162.T + 1.48e5T^{2} \)
59 \( 1 - 206.T + 2.05e5T^{2} \)
61 \( 1 + 856.T + 2.26e5T^{2} \)
67 \( 1 + 435.T + 3.00e5T^{2} \)
71 \( 1 + 132.T + 3.57e5T^{2} \)
73 \( 1 + 675.T + 3.89e5T^{2} \)
79 \( 1 + 802.T + 4.93e5T^{2} \)
83 \( 1 - 657.T + 5.71e5T^{2} \)
89 \( 1 - 1.58e3T + 7.04e5T^{2} \)
97 \( 1 + 1.54e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.725413747272650634266181213387, −8.075457780020193002486371745964, −7.52670781168933481160511378914, −6.31829892733550661496088096368, −5.70222710607669211413271339209, −4.80693039231582658939144036784, −4.05466469126570284301435703710, −3.02731871393078015279589709931, −1.49175751646686152870988467699, −0.908148351383024656368158127258, 0.908148351383024656368158127258, 1.49175751646686152870988467699, 3.02731871393078015279589709931, 4.05466469126570284301435703710, 4.80693039231582658939144036784, 5.70222710607669211413271339209, 6.31829892733550661496088096368, 7.52670781168933481160511378914, 8.075457780020193002486371745964, 8.725413747272650634266181213387

Graph of the $Z$-function along the critical line