Properties

Label 2-1840-1.1-c3-0-63
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0875·3-s + 5·5-s + 28.3·7-s − 26.9·9-s + 32.7·11-s + 18.5·13-s + 0.437·15-s + 6.98·17-s + 147.·19-s + 2.48·21-s + 23·23-s + 25·25-s − 4.72·27-s + 287.·29-s − 269.·31-s + 2.87·33-s + 141.·35-s − 84.0·37-s + 1.62·39-s − 126.·41-s − 229.·43-s − 134.·45-s + 110.·47-s + 463.·49-s + 0.611·51-s + 358.·53-s + 163.·55-s + ⋯
L(s)  = 1  + 0.0168·3-s + 0.447·5-s + 1.53·7-s − 0.999·9-s + 0.898·11-s + 0.396·13-s + 0.00753·15-s + 0.0996·17-s + 1.78·19-s + 0.0258·21-s + 0.208·23-s + 0.200·25-s − 0.0337·27-s + 1.84·29-s − 1.56·31-s + 0.0151·33-s + 0.685·35-s − 0.373·37-s + 0.00667·39-s − 0.483·41-s − 0.814·43-s − 0.447·45-s + 0.341·47-s + 1.35·49-s + 0.00167·51-s + 0.928·53-s + 0.401·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.388769951\)
\(L(\frac12)\) \(\approx\) \(3.388769951\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
23 \( 1 - 23T \)
good3 \( 1 - 0.0875T + 27T^{2} \)
7 \( 1 - 28.3T + 343T^{2} \)
11 \( 1 - 32.7T + 1.33e3T^{2} \)
13 \( 1 - 18.5T + 2.19e3T^{2} \)
17 \( 1 - 6.98T + 4.91e3T^{2} \)
19 \( 1 - 147.T + 6.85e3T^{2} \)
29 \( 1 - 287.T + 2.43e4T^{2} \)
31 \( 1 + 269.T + 2.97e4T^{2} \)
37 \( 1 + 84.0T + 5.06e4T^{2} \)
41 \( 1 + 126.T + 6.89e4T^{2} \)
43 \( 1 + 229.T + 7.95e4T^{2} \)
47 \( 1 - 110.T + 1.03e5T^{2} \)
53 \( 1 - 358.T + 1.48e5T^{2} \)
59 \( 1 + 400.T + 2.05e5T^{2} \)
61 \( 1 - 721.T + 2.26e5T^{2} \)
67 \( 1 - 590.T + 3.00e5T^{2} \)
71 \( 1 + 976.T + 3.57e5T^{2} \)
73 \( 1 + 152.T + 3.89e5T^{2} \)
79 \( 1 - 1.19e3T + 4.93e5T^{2} \)
83 \( 1 - 817.T + 5.71e5T^{2} \)
89 \( 1 + 1.30e3T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.774538654005608740674162155144, −8.264363305914355545603443796225, −7.37370097283884915147669961626, −6.49062454923916741911412283791, −5.42977857877429847580333146558, −5.09512035713081351194950807412, −3.88662267161758909310538843798, −2.89360911345742656300234172638, −1.72060290146748587118071598600, −0.939111987001259654128718914486, 0.939111987001259654128718914486, 1.72060290146748587118071598600, 2.89360911345742656300234172638, 3.88662267161758909310538843798, 5.09512035713081351194950807412, 5.42977857877429847580333146558, 6.49062454923916741911412283791, 7.37370097283884915147669961626, 8.264363305914355545603443796225, 8.774538654005608740674162155144

Graph of the $Z$-function along the critical line