Properties

Label 8-1840e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.146\times 10^{13}$
Sign $1$
Analytic cond. $46599.3$
Root an. cond. $3.83307$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·9-s + 10·25-s − 4·29-s + 28·41-s − 18·49-s + 90·81-s − 68·101-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4·9-s + 2·25-s − 0.742·29-s + 4.37·41-s − 2.57·49-s + 10·81-s − 6.76·101-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(46599.3\)
Root analytic conductor: \(3.83307\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5799134993\)
\(L(\frac12)\) \(\approx\) \(0.5799134993\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2^2$ \( ( 1 + 9 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 11 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2}( 1 + 3 T + p T^{2} )^{2} \)
37$C_2^2$ \( ( 1 - 51 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 101 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 111 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 41 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 174 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52961426973584903350051045367, −6.39579841569836241510412957599, −6.01355556371422401659337887503, −5.93768865842394703826656149652, −5.75400720650370483794534513802, −5.60355237382305888174986188154, −5.26697566067275251932336283458, −5.17440272046197004690524038794, −4.92102137460758926290670495276, −4.90585800555690236179413115686, −4.28052466665405014407299457043, −4.15520192472543363413458049992, −3.90370225711260711889642521196, −3.78972420525058776239612961414, −3.20865053416013096390314620718, −3.12958522663944159721637292391, −2.79627492392428518324473270068, −2.72573984853211976124527586517, −2.66608284446246635060198402759, −2.35757200429384525315937316916, −1.84641117177676497775036772275, −1.52126339665491535471055152381, −1.02157955402819838808504326641, −0.66524876698138781753772870351, −0.18383230437144955010962535026, 0.18383230437144955010962535026, 0.66524876698138781753772870351, 1.02157955402819838808504326641, 1.52126339665491535471055152381, 1.84641117177676497775036772275, 2.35757200429384525315937316916, 2.66608284446246635060198402759, 2.72573984853211976124527586517, 2.79627492392428518324473270068, 3.12958522663944159721637292391, 3.20865053416013096390314620718, 3.78972420525058776239612961414, 3.90370225711260711889642521196, 4.15520192472543363413458049992, 4.28052466665405014407299457043, 4.90585800555690236179413115686, 4.92102137460758926290670495276, 5.17440272046197004690524038794, 5.26697566067275251932336283458, 5.60355237382305888174986188154, 5.75400720650370483794534513802, 5.93768865842394703826656149652, 6.01355556371422401659337887503, 6.39579841569836241510412957599, 6.52961426973584903350051045367

Graph of the $Z$-function along the critical line