L(s) = 1 | + (1 + i)2-s − 2·3-s + 2i·4-s + 3.74·5-s + (−2 − 2i)6-s + (−2 + 2i)8-s + 9-s + (3.74 + 3.74i)10-s + 3.74i·11-s − 4i·12-s + 4i·13-s − 7.48·15-s − 4·16-s − 7.48i·17-s + (1 + i)18-s − 3.74i·19-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s − 1.15·3-s + i·4-s + 1.67·5-s + (−0.816 − 0.816i)6-s + (−0.707 + 0.707i)8-s + 0.333·9-s + (1.18 + 1.18i)10-s + 1.12i·11-s − 1.15i·12-s + 1.10i·13-s − 1.93·15-s − 16-s − 1.81i·17-s + (0.235 + 0.235i)18-s − 0.858i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.109 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.109 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05610 + 0.946295i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05610 + 0.946295i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 23 | \( 1 + (-3.74 + 3i)T \) |
good | 3 | \( 1 + 2T + 3T^{2} \) |
| 5 | \( 1 - 3.74T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 - 3.74iT - 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 7.48iT - 17T^{2} \) |
| 19 | \( 1 + 3.74iT - 19T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + 3.74T + 37T^{2} \) |
| 41 | \( 1 + 4T + 41T^{2} \) |
| 43 | \( 1 + 3.74iT - 43T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 + 3.74T + 53T^{2} \) |
| 59 | \( 1 + 2T + 59T^{2} \) |
| 61 | \( 1 - 11.2T + 61T^{2} \) |
| 67 | \( 1 + 11.2iT - 67T^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 - 8T + 73T^{2} \) |
| 79 | \( 1 + 7.48T + 79T^{2} \) |
| 83 | \( 1 - 11.2iT - 83T^{2} \) |
| 89 | \( 1 - 7.48iT - 89T^{2} \) |
| 97 | \( 1 + 7.48iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95994284175456130221658717946, −11.99940431993657113084740908344, −11.15107403426225027003690027295, −9.783050857490747431568234566074, −8.989207658483847820091447243225, −6.93300420890005330966792667750, −6.60643130094261070477138724405, −5.25953054986508603221972794454, −4.83031192695072343460184636443, −2.42136480627944769424890643112,
1.43921759295853468101761526996, 3.23924115048015844390918395220, 5.17701535225859987080360240440, 5.85371545182580844712772491264, 6.32854345382886087974174240767, 8.608616022707566008882485854245, 9.997098492649248403394385694537, 10.55816539214557612817551038674, 11.28560761110908356557053600897, 12.59049661668780874930029697896