Properties

Label 4-1800e2-1.1-c1e2-0-28
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $206.585$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·7-s + 4·16-s + 8·28-s − 20·31-s − 2·49-s − 8·64-s − 28·73-s − 20·79-s − 4·97-s − 28·103-s − 16·112-s − 10·121-s + 40·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 4-s − 1.51·7-s + 16-s + 1.51·28-s − 3.59·31-s − 2/7·49-s − 64-s − 3.27·73-s − 2.25·79-s − 0.406·97-s − 2.75·103-s − 1.51·112-s − 0.909·121-s + 3.59·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(206.585\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.097278333646016043644896632751, −8.947174569086627530166685160944, −8.186389872541100225267746582602, −8.159503348502677388655341050829, −7.27555897520815826322214297244, −7.16980034059035337689784753713, −6.87201030730388695291060964067, −5.97841109450943491439673499190, −5.95937510888850869399184321810, −5.48695190598253148257586371512, −5.08098196072103224937510906616, −4.27738163237587234390225253332, −4.22532595064622352166774962568, −3.38481122187681106371870946495, −3.36275080870364268618296400089, −2.76014854368415329163206817809, −1.87994880808488266813241989632, −1.30825775781324601032672761017, 0, 0, 1.30825775781324601032672761017, 1.87994880808488266813241989632, 2.76014854368415329163206817809, 3.36275080870364268618296400089, 3.38481122187681106371870946495, 4.22532595064622352166774962568, 4.27738163237587234390225253332, 5.08098196072103224937510906616, 5.48695190598253148257586371512, 5.95937510888850869399184321810, 5.97841109450943491439673499190, 6.87201030730388695291060964067, 7.16980034059035337689784753713, 7.27555897520815826322214297244, 8.159503348502677388655341050829, 8.186389872541100225267746582602, 8.947174569086627530166685160944, 9.097278333646016043644896632751

Graph of the $Z$-function along the critical line