Properties

Label 4-1800e2-1.1-c1e2-0-30
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $206.585$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·16-s − 8·19-s − 12·23-s − 12·29-s − 16·43-s − 4·49-s + 24·53-s − 8·64-s − 16·67-s − 28·73-s + 16·76-s + 24·92-s + 20·97-s − 12·101-s + 24·116-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + ⋯
L(s)  = 1  − 4-s + 16-s − 1.83·19-s − 2.50·23-s − 2.22·29-s − 2.43·43-s − 4/7·49-s + 3.29·53-s − 64-s − 1.95·67-s − 3.27·73-s + 1.83·76-s + 2.50·92-s + 2.03·97-s − 1.19·101-s + 2.22·116-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(206.585\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 116 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 128 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.943988129895287139199922873902, −8.624068777247899082972725224282, −8.454115931298661236787194428559, −8.049317074485377000421313087423, −7.37236661811206806249157074321, −7.36333165492618015195395587155, −6.66949795278718274496167074821, −6.02980566535409507150749377977, −5.88354853880028814942318557493, −5.58709075838795321300631670447, −4.85393781871152502645944427568, −4.47406466746149651242449255483, −4.11181320787517250526126502702, −3.67021397352078189010026446535, −3.34560043828901261758983893304, −2.38911572744647491431735255709, −1.97639686754233461993743636092, −1.42092304265090400906119991156, 0, 0, 1.42092304265090400906119991156, 1.97639686754233461993743636092, 2.38911572744647491431735255709, 3.34560043828901261758983893304, 3.67021397352078189010026446535, 4.11181320787517250526126502702, 4.47406466746149651242449255483, 4.85393781871152502645944427568, 5.58709075838795321300631670447, 5.88354853880028814942318557493, 6.02980566535409507150749377977, 6.66949795278718274496167074821, 7.36333165492618015195395587155, 7.37236661811206806249157074321, 8.049317074485377000421313087423, 8.454115931298661236787194428559, 8.624068777247899082972725224282, 8.943988129895287139199922873902

Graph of the $Z$-function along the critical line