Properties

Label 2-1800-1.1-c1-0-15
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $14.3730$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 2·11-s + 2·13-s − 6·17-s + 8·19-s + 4·23-s − 8·29-s − 10·37-s − 2·41-s − 12·43-s − 3·49-s − 10·53-s + 6·59-s + 2·61-s − 8·67-s + 4·71-s + 4·73-s + 4·77-s − 8·79-s − 4·83-s − 6·89-s − 4·91-s + 8·97-s − 2·103-s − 4·107-s − 6·109-s − 2·113-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.603·11-s + 0.554·13-s − 1.45·17-s + 1.83·19-s + 0.834·23-s − 1.48·29-s − 1.64·37-s − 0.312·41-s − 1.82·43-s − 3/7·49-s − 1.37·53-s + 0.781·59-s + 0.256·61-s − 0.977·67-s + 0.474·71-s + 0.468·73-s + 0.455·77-s − 0.900·79-s − 0.439·83-s − 0.635·89-s − 0.419·91-s + 0.812·97-s − 0.197·103-s − 0.386·107-s − 0.574·109-s − 0.188·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(14.3730\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.988892191864512458013193817471, −8.136056360422255191066760940012, −7.15562382903539764269849136934, −6.63560342158760211146375054979, −5.56718290716607818845063804153, −4.90786055385638384453526942829, −3.63702338059271712194862462334, −2.98769726639906032012813910091, −1.65944442938371927957526732518, 0, 1.65944442938371927957526732518, 2.98769726639906032012813910091, 3.63702338059271712194862462334, 4.90786055385638384453526942829, 5.56718290716607818845063804153, 6.63560342158760211146375054979, 7.15562382903539764269849136934, 8.136056360422255191066760940012, 8.988892191864512458013193817471

Graph of the $Z$-function along the critical line