Properties

Label 8-180e4-1.1-c2e4-0-3
Degree $8$
Conductor $1049760000$
Sign $1$
Analytic cond. $578.669$
Root an. cond. $2.21464$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 50·25-s − 144·29-s − 72·41-s + 20·49-s − 296·61-s − 64·64-s − 72·89-s − 200·100-s − 144·101-s + 104·109-s − 576·116-s + 268·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s − 288·164-s + 167-s + 28·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 4-s − 2·25-s − 4.96·29-s − 1.75·41-s + 0.408·49-s − 4.85·61-s − 64-s − 0.808·89-s − 2·100-s − 1.42·101-s + 0.954·109-s − 4.96·116-s + 2.21·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s − 1.75·164-s + 0.00598·167-s + 0.165·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(578.669\)
Root analytic conductor: \(2.21464\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6778634625\)
\(L(\frac12)\) \(\approx\) \(0.6778634625\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
3 \( 1 \)
5$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 134 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 478 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 530 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 1010 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 36 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 1874 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 178 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 4942 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 5990 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 74 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 7250 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 718 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 9362 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 4370 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 5666 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 13634 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153951718552026362492184599664, −9.043730863199164944235358007324, −8.374771765451133634202781992725, −7.980647666964529344070320259314, −7.951778713441264346579436727135, −7.73417020219251135542917084716, −7.32608154982488439577829728401, −7.08013393255983853849587827735, −6.91695597816170132434497235598, −6.67821230283248354552895136562, −5.96799338933057284703192938681, −5.86733273706036309341186507352, −5.68791583125425206057988374036, −5.65597396592379580872745693064, −4.89679929304748720896652796879, −4.67170285236554176737861702631, −4.12165445256262683031701901796, −3.99394460265033085792277533667, −3.43742046502072454336179897635, −3.20545555520036530562574252121, −2.82795598849732284461674779715, −1.84468990945888461962682378871, −1.83729652023832807816969641358, −1.80905440824910575948112813922, −0.23041075168654342416447235850, 0.23041075168654342416447235850, 1.80905440824910575948112813922, 1.83729652023832807816969641358, 1.84468990945888461962682378871, 2.82795598849732284461674779715, 3.20545555520036530562574252121, 3.43742046502072454336179897635, 3.99394460265033085792277533667, 4.12165445256262683031701901796, 4.67170285236554176737861702631, 4.89679929304748720896652796879, 5.65597396592379580872745693064, 5.68791583125425206057988374036, 5.86733273706036309341186507352, 5.96799338933057284703192938681, 6.67821230283248354552895136562, 6.91695597816170132434497235598, 7.08013393255983853849587827735, 7.32608154982488439577829728401, 7.73417020219251135542917084716, 7.951778713441264346579436727135, 7.980647666964529344070320259314, 8.374771765451133634202781992725, 9.043730863199164944235358007324, 9.153951718552026362492184599664

Graph of the $Z$-function along the critical line