L(s) = 1 | + (1.38 − 0.282i)2-s + (0.959 + 1.44i)3-s + (1.84 − 0.782i)4-s + (−1.62 + 1.53i)5-s + (1.73 + 1.72i)6-s + (−0.550 − 0.953i)7-s + (2.32 − 1.60i)8-s + (−1.15 + 2.76i)9-s + (−1.81 + 2.58i)10-s + (−2.84 − 4.92i)11-s + (2.89 + 1.90i)12-s + (2.07 + 1.19i)13-s + (−1.03 − 1.16i)14-s + (−3.77 − 0.864i)15-s + (2.77 − 2.88i)16-s − 1.29·17-s + ⋯ |
L(s) = 1 | + (0.979 − 0.199i)2-s + (0.554 + 0.832i)3-s + (0.920 − 0.391i)4-s + (−0.725 + 0.687i)5-s + (0.709 + 0.705i)6-s + (−0.208 − 0.360i)7-s + (0.823 − 0.567i)8-s + (−0.385 + 0.922i)9-s + (−0.574 + 0.818i)10-s + (−0.856 − 1.48i)11-s + (0.835 + 0.549i)12-s + (0.575 + 0.332i)13-s + (−0.275 − 0.311i)14-s + (−0.974 − 0.223i)15-s + (0.693 − 0.720i)16-s − 0.313·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 - 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.915 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00791 + 0.422925i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00791 + 0.422925i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.282i)T \) |
| 3 | \( 1 + (-0.959 - 1.44i)T \) |
| 5 | \( 1 + (1.62 - 1.53i)T \) |
good | 7 | \( 1 + (0.550 + 0.953i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.84 + 4.92i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.07 - 1.19i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.29T + 17T^{2} \) |
| 19 | \( 1 + 2.78iT - 19T^{2} \) |
| 23 | \( 1 + (-1.82 - 1.05i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.51 - 3.18i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.78 - 1.60i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.51iT - 37T^{2} \) |
| 41 | \( 1 + (-6.35 - 3.66i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.25 + 3.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (8.09 - 4.67i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 11.5T + 53T^{2} \) |
| 59 | \( 1 + (3.66 - 6.34i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.48 - 4.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.85 - 3.20i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.6T + 71T^{2} \) |
| 73 | \( 1 - 9.86iT - 73T^{2} \) |
| 79 | \( 1 + (0.975 - 0.563i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.98 + 5.76i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 9.16iT - 89T^{2} \) |
| 97 | \( 1 + (-11.1 + 6.42i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06242542002782130219925641367, −11.30534774776334373937049235468, −11.10110531369703027756036060975, −10.11393539740837651974796873167, −8.614909612114184703564811587742, −7.51567444162815480578790775489, −6.22431145103770003703000962531, −4.85884350452008456476648137955, −3.61976267040721083524794911079, −2.90498887668807598076223834389,
2.12083145093735768371966874183, 3.63677052791699701553990563672, 4.94821735878169180748002785113, 6.25864687639693842051458016525, 7.53821459798216483587432504531, 8.039590174019610060942642982852, 9.400386401963009016099929301707, 11.02697870971605749213957465552, 12.15213281329560894255844875582, 12.73567091310778125337552772458