Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 2·13-s + 6·17-s − 4·19-s − 6·23-s + 25-s − 6·29-s − 4·31-s + 2·35-s + 2·37-s − 6·41-s − 10·43-s + 6·47-s − 3·49-s + 6·53-s − 12·59-s + 2·61-s + 2·65-s + 2·67-s + 12·71-s + 2·73-s + 8·79-s − 6·83-s + 6·85-s + 6·89-s + 4·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 0.554·13-s + 1.45·17-s − 0.917·19-s − 1.25·23-s + 1/5·25-s − 1.11·29-s − 0.718·31-s + 0.338·35-s + 0.328·37-s − 0.937·41-s − 1.52·43-s + 0.875·47-s − 3/7·49-s + 0.824·53-s − 1.56·59-s + 0.256·61-s + 0.248·65-s + 0.244·67-s + 1.42·71-s + 0.234·73-s + 0.900·79-s − 0.658·83-s + 0.650·85-s + 0.635·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(180\)    =    \(2^{2} \cdot 3^{2} \cdot 5\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{180} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 180,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.31298$
$L(\frac12)$  $\approx$  $1.31298$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.64919926214782333798361971460, −11.66835822739294093715813029994, −10.66869217043212474435745329357, −9.749524176059453166876684221310, −8.536040373596851277524077678909, −7.64589778281564359800589548721, −6.21444115782927123192608967686, −5.19647848534431193907436500640, −3.71119793411816721603957340078, −1.81793015252092636076156145980, 1.81793015252092636076156145980, 3.71119793411816721603957340078, 5.19647848534431193907436500640, 6.21444115782927123192608967686, 7.64589778281564359800589548721, 8.536040373596851277524077678909, 9.749524176059453166876684221310, 10.66869217043212474435745329357, 11.66835822739294093715813029994, 12.64919926214782333798361971460

Graph of the $Z$-function along the critical line