Properties

Label 2-18-1.1-c41-0-14
Degree $2$
Conductor $18$
Sign $-1$
Analytic cond. $191.649$
Root an. cond. $13.8437$
Motivic weight $41$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.04e6·2-s + 1.09e12·4-s + 4.85e13·5-s − 1.19e17·7-s + 1.15e18·8-s + 5.08e19·10-s − 3.15e21·11-s − 1.14e22·13-s − 1.25e23·14-s + 1.20e24·16-s + 2.67e25·17-s + 6.79e25·19-s + 5.33e25·20-s − 3.30e27·22-s + 1.35e28·23-s − 4.31e28·25-s − 1.19e28·26-s − 1.31e29·28-s − 1.36e29·29-s + 3.06e30·31-s + 1.26e30·32-s + 2.80e31·34-s − 5.79e30·35-s − 2.21e32·37-s + 7.12e31·38-s + 5.59e31·40-s + 5.01e32·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.227·5-s − 0.565·7-s + 0.353·8-s + 0.160·10-s − 1.41·11-s − 0.166·13-s − 0.399·14-s + 1/4·16-s + 1.59·17-s + 0.414·19-s + 0.113·20-s − 0.999·22-s + 1.64·23-s − 0.948·25-s − 0.117·26-s − 0.282·28-s − 0.143·29-s + 0.818·31-s + 0.176·32-s + 1.12·34-s − 0.128·35-s − 1.57·37-s + 0.293·38-s + 0.0804·40-s + 0.435·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(42-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+41/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(191.649\)
Root analytic conductor: \(13.8437\)
Motivic weight: \(41\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18,\ (\ :41/2),\ -1)\)

Particular Values

\(L(21)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{43}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{20} T \)
3 \( 1 \)
good5 \( 1 - 1940167805226 p^{2} T + p^{41} T^{2} \)
7 \( 1 + 2436580524421432 p^{2} T + p^{41} T^{2} \)
11 \( 1 + \)\(28\!\cdots\!32\)\( p T + p^{41} T^{2} \)
13 \( 1 + 67516566191869487746 p^{2} T + p^{41} T^{2} \)
17 \( 1 - \)\(15\!\cdots\!74\)\( p T + p^{41} T^{2} \)
19 \( 1 - \)\(18\!\cdots\!60\)\( p^{2} T + p^{41} T^{2} \)
23 \( 1 - \)\(13\!\cdots\!04\)\( T + p^{41} T^{2} \)
29 \( 1 + \)\(13\!\cdots\!10\)\( T + p^{41} T^{2} \)
31 \( 1 - \)\(98\!\cdots\!52\)\( p T + p^{41} T^{2} \)
37 \( 1 + \)\(59\!\cdots\!94\)\( p T + p^{41} T^{2} \)
41 \( 1 - \)\(50\!\cdots\!38\)\( T + p^{41} T^{2} \)
43 \( 1 + \)\(31\!\cdots\!84\)\( T + p^{41} T^{2} \)
47 \( 1 + \)\(13\!\cdots\!92\)\( T + p^{41} T^{2} \)
53 \( 1 - \)\(32\!\cdots\!14\)\( T + p^{41} T^{2} \)
59 \( 1 + \)\(34\!\cdots\!20\)\( T + p^{41} T^{2} \)
61 \( 1 + \)\(97\!\cdots\!78\)\( T + p^{41} T^{2} \)
67 \( 1 - \)\(16\!\cdots\!52\)\( T + p^{41} T^{2} \)
71 \( 1 + \)\(11\!\cdots\!32\)\( T + p^{41} T^{2} \)
73 \( 1 - \)\(19\!\cdots\!66\)\( T + p^{41} T^{2} \)
79 \( 1 + \)\(56\!\cdots\!80\)\( T + p^{41} T^{2} \)
83 \( 1 - \)\(60\!\cdots\!84\)\( T + p^{41} T^{2} \)
89 \( 1 + \)\(11\!\cdots\!90\)\( T + p^{41} T^{2} \)
97 \( 1 + \)\(63\!\cdots\!98\)\( T + p^{41} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59001561768409949465845246747, −9.692525788852059380819605104220, −8.045128574007036058925516849637, −7.00676614785234274848333531269, −5.67718661774929427659534630801, −4.98069800235671968110704742820, −3.40942278607602624181960276288, −2.72520307362267643608116637657, −1.34809569709815054591711406589, 0, 1.34809569709815054591711406589, 2.72520307362267643608116637657, 3.40942278607602624181960276288, 4.98069800235671968110704742820, 5.67718661774929427659534630801, 7.00676614785234274848333531269, 8.045128574007036058925516849637, 9.692525788852059380819605104220, 10.59001561768409949465845246747

Graph of the $Z$-function along the critical line