Properties

Label 8-1792e4-1.1-c1e4-0-10
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $41923.7$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 8·7-s + 4·9-s + 12·19-s − 32·21-s + 12·25-s − 4·27-s + 16·37-s + 34·49-s + 48·57-s + 36·59-s − 32·63-s + 48·75-s − 10·81-s + 36·83-s − 48·103-s + 64·111-s − 24·113-s + 12·121-s + 127-s + 131-s − 96·133-s + 137-s + 139-s + 136·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2.30·3-s − 3.02·7-s + 4/3·9-s + 2.75·19-s − 6.98·21-s + 12/5·25-s − 0.769·27-s + 2.63·37-s + 34/7·49-s + 6.35·57-s + 4.68·59-s − 4.03·63-s + 5.54·75-s − 1.11·81-s + 3.95·83-s − 4.72·103-s + 6.07·111-s − 2.25·113-s + 1.09·121-s + 0.0887·127-s + 0.0873·131-s − 8.32·133-s + 0.0854·137-s + 0.0848·139-s + 11.2·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(41923.7\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.949001578\)
\(L(\frac12)\) \(\approx\) \(6.949001578\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good3$D_{4}$ \( ( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
5$D_4\times C_2$ \( 1 - 12 T^{2} + 74 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 12 T^{2} + 86 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 28 T^{2} + 426 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 6 T + 44 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 60 T^{2} + 1766 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
41$D_4\times C_2$ \( 1 - 36 T^{2} + 614 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 76 T^{2} + 3414 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 - 18 T + 172 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 76 T^{2} + 6186 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 172 T^{2} + 14646 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 132 T^{2} + 11366 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 - 18 T + 244 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 132 T^{2} + 7910 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.60710582639251470740998581017, −6.56508512973980881960217348007, −6.29759640459938582725705859473, −5.88766396042881157726493356758, −5.83961248398553963860705521068, −5.54838507311446131940763750617, −5.39836239093837971827370452998, −5.17122501258910507115592066310, −4.82385644311647470037347979052, −4.66189211065899043038366722962, −4.24827113296316988379284838738, −3.90645089385349625246229674718, −3.83164743235685588504676658622, −3.44806444111806495987702984262, −3.38171630551222136045051876527, −3.17608693914723333447999375355, −3.05697446319697971825497965314, −2.63469646881604824933228254168, −2.59826116250856262726436913046, −2.38912370413532841440509019205, −2.32173005205651868303317773901, −1.48722387404717483233693674375, −0.933063568419090143709175370031, −0.932347687983879312543311894919, −0.46642505627728100919598657793, 0.46642505627728100919598657793, 0.932347687983879312543311894919, 0.933063568419090143709175370031, 1.48722387404717483233693674375, 2.32173005205651868303317773901, 2.38912370413532841440509019205, 2.59826116250856262726436913046, 2.63469646881604824933228254168, 3.05697446319697971825497965314, 3.17608693914723333447999375355, 3.38171630551222136045051876527, 3.44806444111806495987702984262, 3.83164743235685588504676658622, 3.90645089385349625246229674718, 4.24827113296316988379284838738, 4.66189211065899043038366722962, 4.82385644311647470037347979052, 5.17122501258910507115592066310, 5.39836239093837971827370452998, 5.54838507311446131940763750617, 5.83961248398553963860705521068, 5.88766396042881157726493356758, 6.29759640459938582725705859473, 6.56508512973980881960217348007, 6.60710582639251470740998581017

Graph of the $Z$-function along the critical line