Properties

Label 8-1792e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.031\times 10^{13}$
Sign $1$
Analytic cond. $41923.7$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s + 4·9-s + 4·25-s − 32·31-s + 34·49-s + 32·63-s − 6·81-s − 16·103-s − 72·113-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 28·169-s + 173-s + 32·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 3.02·7-s + 4/3·9-s + 4/5·25-s − 5.74·31-s + 34/7·49-s + 4.03·63-s − 2/3·81-s − 1.57·103-s − 6.77·113-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.15·169-s + 0.0760·173-s + 2.41·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{32} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(41923.7\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{32} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.974753264\)
\(L(\frac12)\) \(\approx\) \(2.974753264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 122 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71696830135905326800491183742, −6.69008259656637490972590677662, −5.88167872646949444854727333832, −5.84598974630436377765673290252, −5.76040004110084872342578564834, −5.46332733702856995997139578999, −5.31390039354101702332540263653, −5.11870142618711833205801656335, −4.77484478179335369302540123919, −4.68752005536493134425437009207, −4.63469641277580437120517900699, −4.12331770300204152270433532727, −3.96038811704835909635138117478, −3.75542677648097625614275171449, −3.65158592882777264273271355498, −3.47310751387342768724261869625, −2.65584026475610212031884129966, −2.62292988788677763959578900250, −2.50588892202341957149153976129, −1.83957233770709877289524295112, −1.61910428636712216156771060209, −1.60488561404812693188391975590, −1.48779104086079354878900818507, −1.01000571017339276369949623800, −0.26578833208435336949568569617, 0.26578833208435336949568569617, 1.01000571017339276369949623800, 1.48779104086079354878900818507, 1.60488561404812693188391975590, 1.61910428636712216156771060209, 1.83957233770709877289524295112, 2.50588892202341957149153976129, 2.62292988788677763959578900250, 2.65584026475610212031884129966, 3.47310751387342768724261869625, 3.65158592882777264273271355498, 3.75542677648097625614275171449, 3.96038811704835909635138117478, 4.12331770300204152270433532727, 4.63469641277580437120517900699, 4.68752005536493134425437009207, 4.77484478179335369302540123919, 5.11870142618711833205801656335, 5.31390039354101702332540263653, 5.46332733702856995997139578999, 5.76040004110084872342578564834, 5.84598974630436377765673290252, 5.88167872646949444854727333832, 6.69008259656637490972590677662, 6.71696830135905326800491183742

Graph of the $Z$-function along the critical line