Properties

Label 2-177-1.1-c5-0-21
Degree $2$
Conductor $177$
Sign $1$
Analytic cond. $28.3879$
Root an. cond. $5.32803$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.29·2-s − 9·3-s − 3.99·4-s + 108.·5-s − 47.6·6-s + 212.·7-s − 190.·8-s + 81·9-s + 571.·10-s − 73.5·11-s + 35.9·12-s − 431.·13-s + 1.12e3·14-s − 972.·15-s − 880.·16-s + 170.·17-s + 428.·18-s + 2.02e3·19-s − 431.·20-s − 1.90e3·21-s − 389.·22-s + 835.·23-s + 1.71e3·24-s + 8.55e3·25-s − 2.28e3·26-s − 729·27-s − 847.·28-s + ⋯
L(s)  = 1  + 0.935·2-s − 0.577·3-s − 0.124·4-s + 1.93·5-s − 0.540·6-s + 1.63·7-s − 1.05·8-s + 0.333·9-s + 1.80·10-s − 0.183·11-s + 0.0720·12-s − 0.707·13-s + 1.53·14-s − 1.11·15-s − 0.859·16-s + 0.143·17-s + 0.311·18-s + 1.28·19-s − 0.241·20-s − 0.944·21-s − 0.171·22-s + 0.329·23-s + 0.607·24-s + 2.73·25-s − 0.661·26-s − 0.192·27-s − 0.204·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $1$
Analytic conductor: \(28.3879\)
Root analytic conductor: \(5.32803\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.802719094\)
\(L(\frac12)\) \(\approx\) \(3.802719094\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
59 \( 1 - 3.48e3T \)
good2 \( 1 - 5.29T + 32T^{2} \)
5 \( 1 - 108.T + 3.12e3T^{2} \)
7 \( 1 - 212.T + 1.68e4T^{2} \)
11 \( 1 + 73.5T + 1.61e5T^{2} \)
13 \( 1 + 431.T + 3.71e5T^{2} \)
17 \( 1 - 170.T + 1.41e6T^{2} \)
19 \( 1 - 2.02e3T + 2.47e6T^{2} \)
23 \( 1 - 835.T + 6.43e6T^{2} \)
29 \( 1 + 5.13e3T + 2.05e7T^{2} \)
31 \( 1 + 272.T + 2.86e7T^{2} \)
37 \( 1 - 9.83e3T + 6.93e7T^{2} \)
41 \( 1 - 1.85e4T + 1.15e8T^{2} \)
43 \( 1 + 1.67e4T + 1.47e8T^{2} \)
47 \( 1 - 2.24e4T + 2.29e8T^{2} \)
53 \( 1 - 1.19e4T + 4.18e8T^{2} \)
61 \( 1 + 3.32e4T + 8.44e8T^{2} \)
67 \( 1 + 3.13e4T + 1.35e9T^{2} \)
71 \( 1 + 2.06e4T + 1.80e9T^{2} \)
73 \( 1 + 4.65e4T + 2.07e9T^{2} \)
79 \( 1 - 2.38e4T + 3.07e9T^{2} \)
83 \( 1 + 5.62e4T + 3.93e9T^{2} \)
89 \( 1 + 5.37e4T + 5.58e9T^{2} \)
97 \( 1 - 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94855426839054641408536016095, −10.95993294099421208779360914550, −9.827921349604585643753805947680, −9.010103734913905272512387708076, −7.41851387628109437238959894220, −5.87170057841823465000233349389, −5.36546848204829723792644669583, −4.58395776103531260505966941146, −2.55176692878869075136933253748, −1.26620540903332943478637594112, 1.26620540903332943478637594112, 2.55176692878869075136933253748, 4.58395776103531260505966941146, 5.36546848204829723792644669583, 5.87170057841823465000233349389, 7.41851387628109437238959894220, 9.010103734913905272512387708076, 9.827921349604585643753805947680, 10.95993294099421208779360914550, 11.94855426839054641408536016095

Graph of the $Z$-function along the critical line