Properties

Label 2-177-1.1-c5-0-4
Degree $2$
Conductor $177$
Sign $1$
Analytic cond. $28.3879$
Root an. cond. $5.32803$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.06·2-s − 9·3-s + 4.83·4-s + 26.0·5-s + 54.6·6-s − 152.·7-s + 164.·8-s + 81·9-s − 158.·10-s + 105.·11-s − 43.5·12-s − 582.·13-s + 926.·14-s − 234.·15-s − 1.15e3·16-s − 1.06e3·17-s − 491.·18-s + 390.·19-s + 126.·20-s + 1.37e3·21-s − 638.·22-s − 400.·23-s − 1.48e3·24-s − 2.44e3·25-s + 3.53e3·26-s − 729·27-s − 738.·28-s + ⋯
L(s)  = 1  − 1.07·2-s − 0.577·3-s + 0.151·4-s + 0.466·5-s + 0.619·6-s − 1.17·7-s + 0.910·8-s + 0.333·9-s − 0.500·10-s + 0.262·11-s − 0.0872·12-s − 0.955·13-s + 1.26·14-s − 0.269·15-s − 1.12·16-s − 0.897·17-s − 0.357·18-s + 0.248·19-s + 0.0704·20-s + 0.679·21-s − 0.281·22-s − 0.157·23-s − 0.525·24-s − 0.782·25-s + 1.02·26-s − 0.192·27-s − 0.177·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $1$
Analytic conductor: \(28.3879\)
Root analytic conductor: \(5.32803\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4373878141\)
\(L(\frac12)\) \(\approx\) \(0.4373878141\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
59 \( 1 - 3.48e3T \)
good2 \( 1 + 6.06T + 32T^{2} \)
5 \( 1 - 26.0T + 3.12e3T^{2} \)
7 \( 1 + 152.T + 1.68e4T^{2} \)
11 \( 1 - 105.T + 1.61e5T^{2} \)
13 \( 1 + 582.T + 3.71e5T^{2} \)
17 \( 1 + 1.06e3T + 1.41e6T^{2} \)
19 \( 1 - 390.T + 2.47e6T^{2} \)
23 \( 1 + 400.T + 6.43e6T^{2} \)
29 \( 1 + 4.91e3T + 2.05e7T^{2} \)
31 \( 1 + 6.82e3T + 2.86e7T^{2} \)
37 \( 1 - 1.57e4T + 6.93e7T^{2} \)
41 \( 1 + 3.50e3T + 1.15e8T^{2} \)
43 \( 1 - 1.02e4T + 1.47e8T^{2} \)
47 \( 1 - 7.72e3T + 2.29e8T^{2} \)
53 \( 1 - 1.79e4T + 4.18e8T^{2} \)
61 \( 1 - 4.55e4T + 8.44e8T^{2} \)
67 \( 1 - 2.06e4T + 1.35e9T^{2} \)
71 \( 1 + 3.94e4T + 1.80e9T^{2} \)
73 \( 1 + 2.61e3T + 2.07e9T^{2} \)
79 \( 1 - 5.26e3T + 3.07e9T^{2} \)
83 \( 1 - 9.80e4T + 3.93e9T^{2} \)
89 \( 1 - 3.51e4T + 5.58e9T^{2} \)
97 \( 1 - 1.26e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.55760648213782965858133606351, −10.51073894660982801985697957620, −9.587876989769454753560346129161, −9.221603599626544496392677119540, −7.66083410805255543645014575280, −6.73413676405898635390843607092, −5.55758886516735802781959422814, −4.08668470472481666428763318041, −2.15243772184414270060510925282, −0.49011152935370269740145836495, 0.49011152935370269740145836495, 2.15243772184414270060510925282, 4.08668470472481666428763318041, 5.55758886516735802781959422814, 6.73413676405898635390843607092, 7.66083410805255543645014575280, 9.221603599626544496392677119540, 9.587876989769454753560346129161, 10.51073894660982801985697957620, 11.55760648213782965858133606351

Graph of the $Z$-function along the critical line