Properties

Label 2-177-177.38-c1-0-13
Degree $2$
Conductor $177$
Sign $0.632 + 0.774i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.277 + 0.166i)2-s + (1.51 − 0.836i)3-s + (−0.887 − 1.67i)4-s + (0.0154 − 0.141i)5-s + (0.559 + 0.0212i)6-s + (−0.858 − 0.289i)7-s + (0.0682 − 1.25i)8-s + (1.60 − 2.53i)9-s + (0.0279 − 0.0367i)10-s + (1.74 + 2.57i)11-s + (−2.74 − 1.79i)12-s + (−0.152 − 0.161i)13-s + (−0.189 − 0.223i)14-s + (−0.0952 − 0.228i)15-s + (−1.89 + 2.80i)16-s + (0.541 + 1.60i)17-s + ⋯
L(s)  = 1  + (0.195 + 0.117i)2-s + (0.875 − 0.482i)3-s + (−0.443 − 0.837i)4-s + (0.00690 − 0.0634i)5-s + (0.228 + 0.00865i)6-s + (−0.324 − 0.109i)7-s + (0.0241 − 0.444i)8-s + (0.533 − 0.845i)9-s + (0.00883 − 0.0116i)10-s + (0.526 + 0.775i)11-s + (−0.792 − 0.518i)12-s + (−0.0423 − 0.0447i)13-s + (−0.0506 − 0.0596i)14-s + (−0.0245 − 0.0588i)15-s + (−0.474 + 0.700i)16-s + (0.131 + 0.389i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.632 + 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.632 + 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.632 + 0.774i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (38, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.632 + 0.774i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.34273 - 0.636767i\)
\(L(\frac12)\) \(\approx\) \(1.34273 - 0.636767i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.51 + 0.836i)T \)
59 \( 1 + (-3.93 - 6.59i)T \)
good2 \( 1 + (-0.277 - 0.166i)T + (0.936 + 1.76i)T^{2} \)
5 \( 1 + (-0.0154 + 0.141i)T + (-4.88 - 1.07i)T^{2} \)
7 \( 1 + (0.858 + 0.289i)T + (5.57 + 4.23i)T^{2} \)
11 \( 1 + (-1.74 - 2.57i)T + (-4.07 + 10.2i)T^{2} \)
13 \( 1 + (0.152 + 0.161i)T + (-0.703 + 12.9i)T^{2} \)
17 \( 1 + (-0.541 - 1.60i)T + (-13.5 + 10.2i)T^{2} \)
19 \( 1 + (-0.332 + 2.02i)T + (-18.0 - 6.06i)T^{2} \)
23 \( 1 + (2.08 - 7.49i)T + (-19.7 - 11.8i)T^{2} \)
29 \( 1 + (-1.29 - 2.15i)T + (-13.5 + 25.6i)T^{2} \)
31 \( 1 + (-3.42 + 0.561i)T + (29.3 - 9.89i)T^{2} \)
37 \( 1 + (4.70 - 0.254i)T + (36.7 - 4.00i)T^{2} \)
41 \( 1 + (7.40 - 2.05i)T + (35.1 - 21.1i)T^{2} \)
43 \( 1 + (-1.53 - 1.04i)T + (15.9 + 39.9i)T^{2} \)
47 \( 1 + (1.35 - 0.147i)T + (45.9 - 10.1i)T^{2} \)
53 \( 1 + (6.14 + 8.08i)T + (-14.1 + 51.0i)T^{2} \)
61 \( 1 + (3.68 - 6.12i)T + (-28.5 - 53.8i)T^{2} \)
67 \( 1 + (-4.55 - 0.246i)T + (66.6 + 7.24i)T^{2} \)
71 \( 1 + (-0.00120 - 0.0110i)T + (-69.3 + 15.2i)T^{2} \)
73 \( 1 + (-6.41 + 5.45i)T + (11.8 - 72.0i)T^{2} \)
79 \( 1 + (4.43 + 11.1i)T + (-57.3 + 54.3i)T^{2} \)
83 \( 1 + (8.16 + 3.77i)T + (53.7 + 63.2i)T^{2} \)
89 \( 1 + (-15.2 + 9.18i)T + (41.6 - 78.6i)T^{2} \)
97 \( 1 + (2.61 + 2.22i)T + (15.6 + 95.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89295677142253444166775418430, −11.77261806372835425318632062751, −10.22954152684157253332416463792, −9.514491156680361578537994707612, −8.624229082257822258241561260088, −7.25356764904309704712956278827, −6.35361691958115734419983590508, −4.86327340597815663143935495091, −3.50996576189877042017675945829, −1.57067455810030818160240308586, 2.73676021393809051565322037863, 3.74472838081817662404305029612, 4.87894289520460951078283771180, 6.65745650958196068585483997202, 8.074858192775164889429921159136, 8.685501942663990611099576300415, 9.660495697178732402355289380701, 10.79334842490063823638334817390, 12.06867027550682955087978950361, 12.87343401135296278717571552705

Graph of the $Z$-function along the critical line