Properties

Label 2-177-59.21-c1-0-9
Degree $2$
Conductor $177$
Sign $-0.535 + 0.844i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.183 + 0.110i)2-s + (0.370 − 0.928i)3-s + (−0.915 − 1.72i)4-s + (−4.31 − 0.469i)5-s + (0.170 − 0.129i)6-s + (2.04 + 0.690i)7-s + (0.0458 − 0.844i)8-s + (−0.725 − 0.687i)9-s + (−0.739 − 0.562i)10-s + (−2.75 − 4.06i)11-s + (−1.94 + 0.211i)12-s + (0.125 − 0.118i)13-s + (0.299 + 0.352i)14-s + (−2.03 + 3.83i)15-s + (−2.09 + 3.08i)16-s + (6.32 − 2.13i)17-s + ⋯
L(s)  = 1  + (0.129 + 0.0780i)2-s + (0.213 − 0.536i)3-s + (−0.457 − 0.863i)4-s + (−1.93 − 0.209i)5-s + (0.0695 − 0.0528i)6-s + (0.774 + 0.260i)7-s + (0.0161 − 0.298i)8-s + (−0.241 − 0.229i)9-s + (−0.233 − 0.177i)10-s + (−0.830 − 1.22i)11-s + (−0.560 + 0.0609i)12-s + (0.0348 − 0.0329i)13-s + (0.0800 + 0.0942i)14-s + (−0.525 + 0.990i)15-s + (−0.522 + 0.771i)16-s + (1.53 − 0.516i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.535 + 0.844i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (139, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ -0.535 + 0.844i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.381134 - 0.692801i\)
\(L(\frac12)\) \(\approx\) \(0.381134 - 0.692801i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.370 + 0.928i)T \)
59 \( 1 + (3.76 - 6.69i)T \)
good2 \( 1 + (-0.183 - 0.110i)T + (0.936 + 1.76i)T^{2} \)
5 \( 1 + (4.31 + 0.469i)T + (4.88 + 1.07i)T^{2} \)
7 \( 1 + (-2.04 - 0.690i)T + (5.57 + 4.23i)T^{2} \)
11 \( 1 + (2.75 + 4.06i)T + (-4.07 + 10.2i)T^{2} \)
13 \( 1 + (-0.125 + 0.118i)T + (0.703 - 12.9i)T^{2} \)
17 \( 1 + (-6.32 + 2.13i)T + (13.5 - 10.2i)T^{2} \)
19 \( 1 + (-0.309 + 1.88i)T + (-18.0 - 6.06i)T^{2} \)
23 \( 1 + (0.787 - 2.83i)T + (-19.7 - 11.8i)T^{2} \)
29 \( 1 + (-2.05 + 1.23i)T + (13.5 - 25.6i)T^{2} \)
31 \( 1 + (0.933 + 5.69i)T + (-29.3 + 9.89i)T^{2} \)
37 \( 1 + (-0.237 - 4.38i)T + (-36.7 + 4.00i)T^{2} \)
41 \( 1 + (0.159 + 0.576i)T + (-35.1 + 21.1i)T^{2} \)
43 \( 1 + (-2.72 + 4.02i)T + (-15.9 - 39.9i)T^{2} \)
47 \( 1 + (-10.0 + 1.09i)T + (45.9 - 10.1i)T^{2} \)
53 \( 1 + (5.89 - 4.48i)T + (14.1 - 51.0i)T^{2} \)
61 \( 1 + (7.62 + 4.58i)T + (28.5 + 53.8i)T^{2} \)
67 \( 1 + (-0.298 + 5.51i)T + (-66.6 - 7.24i)T^{2} \)
71 \( 1 + (1.94 - 0.211i)T + (69.3 - 15.2i)T^{2} \)
73 \( 1 + (8.10 + 9.54i)T + (-11.8 + 72.0i)T^{2} \)
79 \( 1 + (-2.36 - 5.94i)T + (-57.3 + 54.3i)T^{2} \)
83 \( 1 + (-5.01 - 2.31i)T + (53.7 + 63.2i)T^{2} \)
89 \( 1 + (-10.0 + 6.07i)T + (41.6 - 78.6i)T^{2} \)
97 \( 1 + (5.74 - 6.76i)T + (-15.6 - 95.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.21864499118739192708851471612, −11.48660802332973617532536484766, −10.64568964691471208393906540317, −9.035068859212605723495016354385, −8.079573848017266159306000328114, −7.52013357995012690626246786361, −5.77389139550445881826934948416, −4.71504183868088224501275195963, −3.31561709345959695416418385647, −0.72740523744736216639266599220, 3.15176245782148239380322792867, 4.17390410546525546405953018011, 4.89609563083126331749904826939, 7.46456282615215188210609941914, 7.79540748651960906021004379386, 8.660730429323468298820306029110, 10.22964352981883051351707131831, 11.14276467515586446015892886105, 12.26297698615762198161468477583, 12.53985452112498855513278507339

Graph of the $Z$-function along the critical line