Properties

Label 2-177-59.19-c1-0-2
Degree $2$
Conductor $177$
Sign $-0.505 - 0.863i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0292 − 0.0551i)2-s + (−0.725 + 0.687i)3-s + (1.12 + 1.65i)4-s + (−2.41 + 0.531i)5-s + (0.0167 + 0.0601i)6-s + (−2.91 + 2.21i)7-s + (0.248 − 0.0269i)8-s + (0.0541 − 0.998i)9-s + (−0.0412 + 0.148i)10-s + (−1.21 − 3.04i)11-s + (−1.94 − 0.429i)12-s + (0.167 + 3.09i)13-s + (0.0370 + 0.225i)14-s + (1.38 − 2.04i)15-s + (−1.47 + 3.69i)16-s + (5.50 + 4.18i)17-s + ⋯
L(s)  = 1  + (0.0206 − 0.0390i)2-s + (−0.419 + 0.397i)3-s + (0.560 + 0.826i)4-s + (−1.07 + 0.237i)5-s + (0.00682 + 0.0245i)6-s + (−1.10 + 0.838i)7-s + (0.0877 − 0.00954i)8-s + (0.0180 − 0.332i)9-s + (−0.0130 + 0.0470i)10-s + (−0.366 − 0.919i)11-s + (−0.562 − 0.123i)12-s + (0.0464 + 0.857i)13-s + (0.00989 + 0.0603i)14-s + (0.358 − 0.528i)15-s + (−0.367 + 0.923i)16-s + (1.33 + 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.505 - 0.863i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.505 - 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.505 - 0.863i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ -0.505 - 0.863i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.382789 + 0.667531i\)
\(L(\frac12)\) \(\approx\) \(0.382789 + 0.667531i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.725 - 0.687i)T \)
59 \( 1 + (2.54 + 7.24i)T \)
good2 \( 1 + (-0.0292 + 0.0551i)T + (-1.12 - 1.65i)T^{2} \)
5 \( 1 + (2.41 - 0.531i)T + (4.53 - 2.09i)T^{2} \)
7 \( 1 + (2.91 - 2.21i)T + (1.87 - 6.74i)T^{2} \)
11 \( 1 + (1.21 + 3.04i)T + (-7.98 + 7.56i)T^{2} \)
13 \( 1 + (-0.167 - 3.09i)T + (-12.9 + 1.40i)T^{2} \)
17 \( 1 + (-5.50 - 4.18i)T + (4.54 + 16.3i)T^{2} \)
19 \( 1 + (-4.59 + 1.54i)T + (15.1 - 11.4i)T^{2} \)
23 \( 1 + (1.26 - 0.758i)T + (10.7 - 20.3i)T^{2} \)
29 \( 1 + (-0.671 - 1.26i)T + (-16.2 + 24.0i)T^{2} \)
31 \( 1 + (-5.47 - 1.84i)T + (24.6 + 18.7i)T^{2} \)
37 \( 1 + (0.515 + 0.0560i)T + (36.1 + 7.95i)T^{2} \)
41 \( 1 + (4.21 + 2.53i)T + (19.2 + 36.2i)T^{2} \)
43 \( 1 + (-3.09 + 7.77i)T + (-31.2 - 29.5i)T^{2} \)
47 \( 1 + (-0.114 - 0.0251i)T + (42.6 + 19.7i)T^{2} \)
53 \( 1 + (-1.48 - 5.36i)T + (-45.4 + 27.3i)T^{2} \)
61 \( 1 + (0.707 - 1.33i)T + (-34.2 - 50.4i)T^{2} \)
67 \( 1 + (-10.3 + 1.12i)T + (65.4 - 14.4i)T^{2} \)
71 \( 1 + (12.6 + 2.78i)T + (64.4 + 29.8i)T^{2} \)
73 \( 1 + (-2.54 - 15.5i)T + (-69.1 + 23.3i)T^{2} \)
79 \( 1 + (2.29 + 2.17i)T + (4.27 + 78.8i)T^{2} \)
83 \( 1 + (5.54 - 6.53i)T + (-13.4 - 81.9i)T^{2} \)
89 \( 1 + (-6.92 - 13.0i)T + (-49.9 + 73.6i)T^{2} \)
97 \( 1 + (-2.63 + 16.0i)T + (-91.9 - 30.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58305732925448336766107083351, −11.97761441521794417396362925956, −11.34119106351966324991548445103, −10.19110317161599240727447834623, −8.886212823726938726008286461770, −7.895916375186870625870928333585, −6.76212553800168739037687562755, −5.68095847342299135604652571870, −3.80093082826408634118807789261, −3.06857951360744308401269021327, 0.74362353197878191192632759645, 3.15378768074521206608502276909, 4.81734959715189233137321528757, 6.05047892816193451196759950597, 7.28479431645074460199322376457, 7.73731646577430703011539084950, 9.851956703884105605691587745556, 10.20107332769483479342132800021, 11.56994965698090185529768430485, 12.18607941783984590416611483775

Graph of the $Z$-function along the critical line