Properties

Label 2-177-59.19-c1-0-0
Degree $2$
Conductor $177$
Sign $0.226 + 0.973i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.07 + 2.03i)2-s + (−0.725 + 0.687i)3-s + (−1.84 − 2.72i)4-s + (−3.23 + 0.712i)5-s + (−0.615 − 2.21i)6-s + (1.31 − 0.996i)7-s + (2.94 − 0.320i)8-s + (0.0541 − 0.998i)9-s + (2.03 − 7.34i)10-s + (−0.922 − 2.31i)11-s + (3.21 + 0.707i)12-s + (0.119 + 2.21i)13-s + (0.612 + 3.73i)14-s + (1.85 − 2.74i)15-s + (−0.0892 + 0.224i)16-s + (−2.34 − 1.77i)17-s + ⋯
L(s)  = 1  + (−0.761 + 1.43i)2-s + (−0.419 + 0.397i)3-s + (−0.922 − 1.36i)4-s + (−1.44 + 0.318i)5-s + (−0.251 − 0.904i)6-s + (0.495 − 0.376i)7-s + (1.04 − 0.113i)8-s + (0.0180 − 0.332i)9-s + (0.644 − 2.32i)10-s + (−0.278 − 0.698i)11-s + (0.927 + 0.204i)12-s + (0.0332 + 0.613i)13-s + (0.163 + 0.998i)14-s + (0.479 − 0.707i)15-s + (−0.0223 + 0.0560i)16-s + (−0.567 − 0.431i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.226 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.226 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.226 + 0.973i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.226 + 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0262805 - 0.0208608i\)
\(L(\frac12)\) \(\approx\) \(0.0262805 - 0.0208608i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.725 - 0.687i)T \)
59 \( 1 + (-0.287 - 7.67i)T \)
good2 \( 1 + (1.07 - 2.03i)T + (-1.12 - 1.65i)T^{2} \)
5 \( 1 + (3.23 - 0.712i)T + (4.53 - 2.09i)T^{2} \)
7 \( 1 + (-1.31 + 0.996i)T + (1.87 - 6.74i)T^{2} \)
11 \( 1 + (0.922 + 2.31i)T + (-7.98 + 7.56i)T^{2} \)
13 \( 1 + (-0.119 - 2.21i)T + (-12.9 + 1.40i)T^{2} \)
17 \( 1 + (2.34 + 1.77i)T + (4.54 + 16.3i)T^{2} \)
19 \( 1 + (6.93 - 2.33i)T + (15.1 - 11.4i)T^{2} \)
23 \( 1 + (-2.37 + 1.42i)T + (10.7 - 20.3i)T^{2} \)
29 \( 1 + (-1.14 - 2.15i)T + (-16.2 + 24.0i)T^{2} \)
31 \( 1 + (7.57 + 2.55i)T + (24.6 + 18.7i)T^{2} \)
37 \( 1 + (9.97 + 1.08i)T + (36.1 + 7.95i)T^{2} \)
41 \( 1 + (9.34 + 5.62i)T + (19.2 + 36.2i)T^{2} \)
43 \( 1 + (2.62 - 6.58i)T + (-31.2 - 29.5i)T^{2} \)
47 \( 1 + (-6.67 - 1.47i)T + (42.6 + 19.7i)T^{2} \)
53 \( 1 + (-0.271 - 0.979i)T + (-45.4 + 27.3i)T^{2} \)
61 \( 1 + (-1.09 + 2.07i)T + (-34.2 - 50.4i)T^{2} \)
67 \( 1 + (-16.2 + 1.76i)T + (65.4 - 14.4i)T^{2} \)
71 \( 1 + (6.36 + 1.40i)T + (64.4 + 29.8i)T^{2} \)
73 \( 1 + (1.45 + 8.86i)T + (-69.1 + 23.3i)T^{2} \)
79 \( 1 + (-9.22 - 8.73i)T + (4.27 + 78.8i)T^{2} \)
83 \( 1 + (-0.0827 + 0.0974i)T + (-13.4 - 81.9i)T^{2} \)
89 \( 1 + (-3.29 - 6.21i)T + (-49.9 + 73.6i)T^{2} \)
97 \( 1 + (2.41 - 14.7i)T + (-91.9 - 30.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93367029847444315491272064863, −12.31095778915651135423567790842, −11.17484750636462875258172930330, −10.56002719864930760380216760809, −8.979186710614588522641063995417, −8.291900165014785774184190204637, −7.29917938629328513902669954362, −6.49980123728282974863773738648, −5.06626567373164487420415586940, −3.87428672739843394173520386364, 0.04034576621935261007288414586, 1.99999807620495900989029805301, 3.69963290678108894168760506292, 4.95802320535889488589781806693, 7.01242116069878487375601227318, 8.266175120008075031105924849221, 8.724096529252406805517539830420, 10.31382888985548554202715617406, 11.05395813870996983219312130329, 11.78070067895392743909963372427

Graph of the $Z$-function along the critical line