Properties

Label 2-42e2-1.1-c3-0-25
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12.8·5-s + 36.8·11-s + 87.1·13-s − 102.·17-s + 95.8·19-s + 96·23-s + 39.4·25-s + 212.·29-s − 159.·31-s + 128.·37-s + 298.·41-s − 33.3·43-s − 271.·47-s − 448.·53-s + 472.·55-s + 668.·59-s − 243.·61-s + 1.11e3·65-s − 335.·67-s + 339.·71-s − 918.·73-s − 136.·79-s − 287.·83-s − 1.31e3·85-s − 161.·89-s + 1.22e3·95-s + 182.·97-s + ⋯
L(s)  = 1  + 1.14·5-s + 1.00·11-s + 1.85·13-s − 1.46·17-s + 1.15·19-s + 0.870·23-s + 0.315·25-s + 1.35·29-s − 0.922·31-s + 0.571·37-s + 1.13·41-s − 0.118·43-s − 0.841·47-s − 1.16·53-s + 1.15·55-s + 1.47·59-s − 0.511·61-s + 2.13·65-s − 0.611·67-s + 0.567·71-s − 1.47·73-s − 0.194·79-s − 0.380·83-s − 1.67·85-s − 0.192·89-s + 1.32·95-s + 0.191·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.585996654\)
\(L(\frac12)\) \(\approx\) \(3.585996654\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 12.8T + 125T^{2} \)
11 \( 1 - 36.8T + 1.33e3T^{2} \)
13 \( 1 - 87.1T + 2.19e3T^{2} \)
17 \( 1 + 102.T + 4.91e3T^{2} \)
19 \( 1 - 95.8T + 6.85e3T^{2} \)
23 \( 1 - 96T + 1.21e4T^{2} \)
29 \( 1 - 212.T + 2.43e4T^{2} \)
31 \( 1 + 159.T + 2.97e4T^{2} \)
37 \( 1 - 128.T + 5.06e4T^{2} \)
41 \( 1 - 298.T + 6.89e4T^{2} \)
43 \( 1 + 33.3T + 7.95e4T^{2} \)
47 \( 1 + 271.T + 1.03e5T^{2} \)
53 \( 1 + 448.T + 1.48e5T^{2} \)
59 \( 1 - 668.T + 2.05e5T^{2} \)
61 \( 1 + 243.T + 2.26e5T^{2} \)
67 \( 1 + 335.T + 3.00e5T^{2} \)
71 \( 1 - 339.T + 3.57e5T^{2} \)
73 \( 1 + 918.T + 3.89e5T^{2} \)
79 \( 1 + 136.T + 4.93e5T^{2} \)
83 \( 1 + 287.T + 5.71e5T^{2} \)
89 \( 1 + 161.T + 7.04e5T^{2} \)
97 \( 1 - 182.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.043870413797742506119105227184, −8.406197711863902879593614381215, −7.16632895284681681750235456354, −6.34119735755441186842475952228, −5.96631575132704157135759826303, −4.87818999672405530096632909682, −3.90999532815131342013252620750, −2.91740681688651484027174819094, −1.71733159692604661448146171938, −0.985660837090024875727802129952, 0.985660837090024875727802129952, 1.71733159692604661448146171938, 2.91740681688651484027174819094, 3.90999532815131342013252620750, 4.87818999672405530096632909682, 5.96631575132704157135759826303, 6.34119735755441186842475952228, 7.16632895284681681750235456354, 8.406197711863902879593614381215, 9.043870413797742506119105227184

Graph of the $Z$-function along the critical line