Properties

Degree $4$
Conductor $3111696$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·11-s − 8·13-s + 6·17-s − 8·19-s − 6·23-s + 5·25-s + 20·29-s − 4·31-s − 6·37-s + 12·41-s + 8·43-s + 8·47-s + 2·53-s + 4·55-s − 4·59-s + 8·61-s − 16·65-s + 8·67-s + 20·71-s − 4·73-s − 4·79-s − 24·83-s + 12·85-s − 14·89-s − 16·95-s + 8·97-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.603·11-s − 2.21·13-s + 1.45·17-s − 1.83·19-s − 1.25·23-s + 25-s + 3.71·29-s − 0.718·31-s − 0.986·37-s + 1.87·41-s + 1.21·43-s + 1.16·47-s + 0.274·53-s + 0.539·55-s − 0.520·59-s + 1.02·61-s − 1.98·65-s + 0.977·67-s + 2.37·71-s − 0.468·73-s − 0.450·79-s − 2.63·83-s + 1.30·85-s − 1.48·89-s − 1.64·95-s + 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3111696\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{1764} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3111696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.550073051\)
\(L(\frac12)\) \(\approx\) \(2.550073051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 6 T - T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 8 T + 17 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T - 49 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 8 T + 3 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 8 T - 3 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 4 T - 57 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 14 T + 107 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.657756893702986201759218320771, −9.193713381170703994465212294195, −8.509782118843760520007398093869, −8.491677782232552694231415706065, −8.027382386670021601496736507693, −7.39554198926179615503978294676, −7.05450527446159565153980669696, −6.82404610126947459825214127948, −6.10976962063568839156611912040, −6.04584554760532082087650235369, −5.43240275147190804650305990858, −5.04966969264627357157604158314, −4.45505166846529717027683983751, −4.29648927015540688758092502634, −3.66516411479278706742311765831, −2.79553370923834536353293614416, −2.52025647958306487466751152811, −2.20705405902293397210486293381, −1.33307648517861311081827693162, −0.62341083741715541956043776308, 0.62341083741715541956043776308, 1.33307648517861311081827693162, 2.20705405902293397210486293381, 2.52025647958306487466751152811, 2.79553370923834536353293614416, 3.66516411479278706742311765831, 4.29648927015540688758092502634, 4.45505166846529717027683983751, 5.04966969264627357157604158314, 5.43240275147190804650305990858, 6.04584554760532082087650235369, 6.10976962063568839156611912040, 6.82404610126947459825214127948, 7.05450527446159565153980669696, 7.39554198926179615503978294676, 8.027382386670021601496736507693, 8.491677782232552694231415706065, 8.509782118843760520007398093869, 9.193713381170703994465212294195, 9.657756893702986201759218320771

Graph of the $Z$-function along the critical line