Properties

Degree $2$
Conductor $1764$
Sign $0.624 + 0.780i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.13 + 0.850i)2-s + (0.554 − 1.92i)4-s + 3.87i·5-s + (1.00 + 2.64i)8-s + (−3.29 − 4.37i)10-s − 3.46·11-s + 0.296·13-s + (−3.38 − 2.12i)16-s − 1.56i·17-s − 7.07i·19-s + (7.43 + 2.14i)20-s + (3.92 − 2.95i)22-s − 5.43·23-s − 9.98·25-s + (−0.335 + 0.252i)26-s + ⋯
L(s)  = 1  + (−0.799 + 0.601i)2-s + (0.277 − 0.960i)4-s + 1.73i·5-s + (0.356 + 0.934i)8-s + (−1.04 − 1.38i)10-s − 1.04·11-s + 0.0822·13-s + (−0.846 − 0.532i)16-s − 0.380i·17-s − 1.62i·19-s + (1.66 + 0.479i)20-s + (0.835 − 0.628i)22-s − 1.13·23-s − 1.99·25-s + (−0.0657 + 0.0494i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.780i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.624 + 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.624 + 0.780i$
Motivic weight: \(1\)
Character: $\chi_{1764} (1079, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ 0.624 + 0.780i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4237977072\)
\(L(\frac12)\) \(\approx\) \(0.4237977072\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.13 - 0.850i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3.87iT - 5T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
13 \( 1 - 0.296T + 13T^{2} \)
17 \( 1 + 1.56iT - 17T^{2} \)
19 \( 1 + 7.07iT - 19T^{2} \)
23 \( 1 + 5.43T + 23T^{2} \)
29 \( 1 + 6.85iT - 29T^{2} \)
31 \( 1 + 2.81iT - 31T^{2} \)
37 \( 1 - 2.51T + 37T^{2} \)
41 \( 1 + 3.55iT - 41T^{2} \)
43 \( 1 - 0.682iT - 43T^{2} \)
47 \( 1 - 2.36T + 47T^{2} \)
53 \( 1 + 0.623iT - 53T^{2} \)
59 \( 1 - 8.85T + 59T^{2} \)
61 \( 1 + 2.66T + 61T^{2} \)
67 \( 1 - 10.6iT - 67T^{2} \)
71 \( 1 + 0.539T + 71T^{2} \)
73 \( 1 + 7.39T + 73T^{2} \)
79 \( 1 - 6.16iT - 79T^{2} \)
83 \( 1 + 6.15T + 83T^{2} \)
89 \( 1 + 11.7iT - 89T^{2} \)
97 \( 1 - 6.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236390708684957392394212205272, −8.195951889917667256183611108828, −7.50882903351940369071076697691, −6.97923623866298845560284040505, −6.19059364206543620524952418538, −5.47581094765134920836694882881, −4.24492931961065317602556587917, −2.78225885476151753081976755680, −2.28648554425463789002679714797, −0.21789538365148923974296670302, 1.18383846034101734490577184769, 2.04578449131867744961355689480, 3.46057839172259880151791853208, 4.34252385322894036436133895351, 5.26211709093262512876940564599, 6.12683144240802500771891128053, 7.50539321259143530308797665618, 8.150223016449746945469987660067, 8.557183776602862867767414724105, 9.390557540768188965787162134234

Graph of the $Z$-function along the critical line