Properties

Degree $2$
Conductor $1764$
Sign $-0.676 - 0.736i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 + 0.0900i)2-s + (1.98 − 0.254i)4-s + 2.48i·5-s + (−2.77 + 0.537i)8-s + (−0.224 − 3.51i)10-s + 4.60·11-s − 5.22·13-s + (3.87 − 1.00i)16-s + 5.61i·17-s − 3.19i·19-s + (0.632 + 4.93i)20-s + (−6.50 + 0.414i)22-s + 0.718·23-s − 1.19·25-s + (7.37 − 0.470i)26-s + ⋯
L(s)  = 1  + (−0.997 + 0.0636i)2-s + (0.991 − 0.127i)4-s + 1.11i·5-s + (−0.981 + 0.189i)8-s + (−0.0708 − 1.11i)10-s + 1.38·11-s − 1.44·13-s + (0.967 − 0.252i)16-s + 1.36i·17-s − 0.732i·19-s + (0.141 + 1.10i)20-s + (−1.38 + 0.0884i)22-s + 0.149·23-s − 0.238·25-s + (1.44 − 0.0921i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.676 - 0.736i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.676 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.676 - 0.736i$
Motivic weight: \(1\)
Character: $\chi_{1764} (1079, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ -0.676 - 0.736i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8016294474\)
\(L(\frac12)\) \(\approx\) \(0.8016294474\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 - 0.0900i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 2.48iT - 5T^{2} \)
11 \( 1 - 4.60T + 11T^{2} \)
13 \( 1 + 5.22T + 13T^{2} \)
17 \( 1 - 5.61iT - 17T^{2} \)
19 \( 1 + 3.19iT - 19T^{2} \)
23 \( 1 - 0.718T + 23T^{2} \)
29 \( 1 - 4.53iT - 29T^{2} \)
31 \( 1 + 1.17iT - 31T^{2} \)
37 \( 1 - 2.71T + 37T^{2} \)
41 \( 1 - 3.83iT - 41T^{2} \)
43 \( 1 - 11.1iT - 43T^{2} \)
47 \( 1 + 5.41T + 47T^{2} \)
53 \( 1 - 2.06iT - 53T^{2} \)
59 \( 1 - 4.11T + 59T^{2} \)
61 \( 1 - 1.01T + 61T^{2} \)
67 \( 1 + 12.6iT - 67T^{2} \)
71 \( 1 + 7.31T + 71T^{2} \)
73 \( 1 + 9.63T + 73T^{2} \)
79 \( 1 - 8.83iT - 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 + 8.52iT - 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.609982947491342617101372596587, −8.909671638198450018373979077599, −7.984201769048856205697523418975, −7.17267678688486299122904239607, −6.63926581381691321497253575287, −6.00454360191516306542190424152, −4.63261700213042247515200120724, −3.38673260266914328136670742905, −2.55621877332842784549634075480, −1.42166601275010832952675103490, 0.43093380708457703407678366733, 1.54372403257566561120672951710, 2.66289888242474112008816819873, 3.96436323522193911281744555725, 4.95817947726427362129017337078, 5.84705892954085766577581555392, 6.95781022826494458228624475468, 7.42871982698149710494761263182, 8.484445704257372621442560159302, 9.006056009582576583570126778486

Graph of the $Z$-function along the critical line