Properties

Degree $2$
Conductor $1764$
Sign $-0.468 - 0.883i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 + 0.0900i)2-s + (1.98 + 0.254i)4-s + 2.48i·5-s + (2.77 + 0.537i)8-s + (−0.224 + 3.51i)10-s − 4.60·11-s − 5.22·13-s + (3.87 + 1.00i)16-s + 5.61i·17-s + 3.19i·19-s + (−0.632 + 4.93i)20-s + (−6.50 − 0.414i)22-s − 0.718·23-s − 1.19·25-s + (−7.37 − 0.470i)26-s + ⋯
L(s)  = 1  + (0.997 + 0.0636i)2-s + (0.991 + 0.127i)4-s + 1.11i·5-s + (0.981 + 0.189i)8-s + (−0.0708 + 1.11i)10-s − 1.38·11-s − 1.44·13-s + (0.967 + 0.252i)16-s + 1.36i·17-s + 0.732i·19-s + (−0.141 + 1.10i)20-s + (−1.38 − 0.0884i)22-s − 0.149·23-s − 0.238·25-s + (−1.44 − 0.0921i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.468 - 0.883i$
Motivic weight: \(1\)
Character: $\chi_{1764} (1079, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ -0.468 - 0.883i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.460200550\)
\(L(\frac12)\) \(\approx\) \(2.460200550\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 - 0.0900i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 2.48iT - 5T^{2} \)
11 \( 1 + 4.60T + 11T^{2} \)
13 \( 1 + 5.22T + 13T^{2} \)
17 \( 1 - 5.61iT - 17T^{2} \)
19 \( 1 - 3.19iT - 19T^{2} \)
23 \( 1 + 0.718T + 23T^{2} \)
29 \( 1 - 4.53iT - 29T^{2} \)
31 \( 1 - 1.17iT - 31T^{2} \)
37 \( 1 - 2.71T + 37T^{2} \)
41 \( 1 - 3.83iT - 41T^{2} \)
43 \( 1 + 11.1iT - 43T^{2} \)
47 \( 1 - 5.41T + 47T^{2} \)
53 \( 1 - 2.06iT - 53T^{2} \)
59 \( 1 + 4.11T + 59T^{2} \)
61 \( 1 - 1.01T + 61T^{2} \)
67 \( 1 - 12.6iT - 67T^{2} \)
71 \( 1 - 7.31T + 71T^{2} \)
73 \( 1 + 9.63T + 73T^{2} \)
79 \( 1 + 8.83iT - 79T^{2} \)
83 \( 1 - 13.7T + 83T^{2} \)
89 \( 1 + 8.52iT - 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03651429266043331826788406512, −8.521388251158740733806848029307, −7.57354577055941463001508670154, −7.22214023257848621508649194549, −6.22919626299598908772697896779, −5.51693656820427724299964278370, −4.67135540164652723752187776144, −3.59892071685320614296184341369, −2.77246687780627039848065499330, −2.01911930666568090348988630781, 0.59221119386588057815291559640, 2.27810031855356558072781439945, 2.89350200020861988859114351881, 4.36865421408869849289155861155, 4.99298138922647577941556539033, 5.34554013328489421416692198609, 6.52619444625285663762076374938, 7.56589333692983975840980321656, 7.88810494710679043367759082511, 9.194272660591326245070907218664

Graph of the $Z$-function along the critical line