Properties

Label 2-175-35.34-c6-0-24
Degree $2$
Conductor $175$
Sign $-0.894 - 0.447i$
Analytic cond. $40.2594$
Root an. cond. $6.34503$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9i·2-s − 17·4-s − 343i·7-s + 423i·8-s − 729·9-s + 1.96e3·11-s + 3.08e3·14-s − 4.89e3·16-s − 6.56e3i·18-s + 1.76e4i·22-s + 2.27e4i·23-s + 5.83e3i·28-s + 2.12e4·29-s − 1.69e4i·32-s + 1.23e4·36-s + 1.01e5i·37-s + ⋯
L(s)  = 1  + 1.12i·2-s − 0.265·4-s i·7-s + 0.826i·8-s − 0.999·9-s + 1.47·11-s + 1.12·14-s − 1.19·16-s − 1.12i·18-s + 1.65i·22-s + 1.86i·23-s + 0.265i·28-s + 0.870·29-s − 0.518i·32-s + 0.265·36-s + 1.99i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(40.2594\)
Root analytic conductor: \(6.34503\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (174, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3),\ -0.894 - 0.447i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.760143159\)
\(L(\frac12)\) \(\approx\) \(1.760143159\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 343iT \)
good2 \( 1 - 9iT - 64T^{2} \)
3 \( 1 + 729T^{2} \)
11 \( 1 - 1.96e3T + 1.77e6T^{2} \)
13 \( 1 + 4.82e6T^{2} \)
17 \( 1 + 2.41e7T^{2} \)
19 \( 1 - 4.70e7T^{2} \)
23 \( 1 - 2.27e4iT - 1.48e8T^{2} \)
29 \( 1 - 2.12e4T + 5.94e8T^{2} \)
31 \( 1 - 8.87e8T^{2} \)
37 \( 1 - 1.01e5iT - 2.56e9T^{2} \)
41 \( 1 - 4.75e9T^{2} \)
43 \( 1 - 1.26e5iT - 6.32e9T^{2} \)
47 \( 1 + 1.07e10T^{2} \)
53 \( 1 + 5.03e4iT - 2.21e10T^{2} \)
59 \( 1 - 4.21e10T^{2} \)
61 \( 1 - 5.15e10T^{2} \)
67 \( 1 + 5.39e4iT - 9.04e10T^{2} \)
71 \( 1 + 2.42e5T + 1.28e11T^{2} \)
73 \( 1 + 1.51e11T^{2} \)
79 \( 1 + 9.29e5T + 2.43e11T^{2} \)
83 \( 1 + 3.26e11T^{2} \)
89 \( 1 - 4.96e11T^{2} \)
97 \( 1 + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.74036935979655328959274647014, −11.29065284569425288043641070846, −9.834652668477942549405129683794, −8.715537448204691557805647060576, −7.76162746669072953731550823769, −6.76740520847528491400210075471, −5.99105910457661947598869054627, −4.67759109887024183184429657838, −3.25997374580471508682336098393, −1.32862181308718705808746466602, 0.51223629433448037460782274566, 2.00696305529256835684234165900, 2.95931332052088730767286080079, 4.22428792046001908466741510012, 5.84243057149328965670756079339, 6.80964819058357011010041364174, 8.621904808408269876392576066345, 9.168540547654333646543529353491, 10.41521622959393079911369002663, 11.36537578708700889400367122824

Graph of the $Z$-function along the critical line