Properties

Label 8-175e4-1.1-c5e4-0-2
Degree $8$
Conductor $937890625$
Sign $1$
Analytic cond. $620575.$
Root an. cond. $5.29784$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 95·4-s + 675·9-s − 1.20e3·11-s + 4.73e3·16-s − 1.26e3·19-s − 1.17e4·29-s − 792·31-s + 6.41e4·36-s + 3.54e3·41-s − 1.14e5·44-s − 4.80e3·49-s − 1.19e5·59-s − 1.03e5·61-s + 1.39e5·64-s + 1.61e5·71-s − 1.19e5·76-s + 1.03e5·79-s + 2.24e5·81-s + 7.53e4·89-s − 8.11e5·99-s + 1.58e5·101-s + 4.98e5·109-s − 1.11e6·116-s + 5.64e5·121-s − 7.52e4·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 2.96·4-s + 25/9·9-s − 2.99·11-s + 4.62·16-s − 0.800·19-s − 2.59·29-s − 0.148·31-s + 8.24·36-s + 0.329·41-s − 8.89·44-s − 2/7·49-s − 4.45·59-s − 3.56·61-s + 4.27·64-s + 3.80·71-s − 2.37·76-s + 1.86·79-s + 3.80·81-s + 1.00·89-s − 8.31·99-s + 1.54·101-s + 4.02·109-s − 7.71·116-s + 3.50·121-s − 0.439·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(620575.\)
Root analytic conductor: \(5.29784\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 7^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(10.23481371\)
\(L(\frac12)\) \(\approx\) \(10.23481371\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_2$ \( ( 1 + p^{4} T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - 95 T^{2} + 67 p^{6} T^{4} - 95 p^{10} T^{6} + p^{20} T^{8} \)
3$D_4\times C_2$ \( 1 - 25 p^{3} T^{2} + 2848 p^{4} T^{4} - 25 p^{13} T^{6} + p^{20} T^{8} \)
11$D_{4}$ \( ( 1 + 601 T + 259506 T^{2} + 601 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 1227415 T^{2} + 637156918888 T^{4} - 1227415 p^{10} T^{6} + p^{20} T^{8} \)
17$D_4\times C_2$ \( 1 - 3631055 T^{2} + 7326406953088 T^{4} - 3631055 p^{10} T^{6} + p^{20} T^{8} \)
19$D_{4}$ \( ( 1 + 630 T + 4931238 T^{2} + 630 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 794440 T^{2} + 80427886013038 T^{4} + 794440 p^{10} T^{6} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 + 5885 T + 35168948 T^{2} + 5885 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 396 T + 43423646 T^{2} + 396 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 186138220 T^{2} + 16233691530051798 T^{4} - 186138220 p^{10} T^{6} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 - 1774 T - 4379094 T^{2} - 1774 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 192604600 T^{2} + 42335578678671838 T^{4} - 192604600 p^{10} T^{6} + p^{20} T^{8} \)
47$D_4\times C_2$ \( 1 - 610148955 T^{2} + 179999270966185448 T^{4} - 610148955 p^{10} T^{6} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 - 121403840 T^{2} + 343112212052927758 T^{4} - 121403840 p^{10} T^{6} + p^{20} T^{8} \)
59$D_{4}$ \( ( 1 + 59600 T + 1881188438 T^{2} + 59600 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 51846 T + 1832119946 T^{2} + 51846 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 3694295980 T^{2} + 6360450835846875958 T^{4} - 3694295980 p^{10} T^{6} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 80744 T + 4781205326 T^{2} - 80744 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 7629610780 T^{2} + 23095701672517150438 T^{4} - 7629610780 p^{10} T^{6} + p^{20} T^{8} \)
79$D_{4}$ \( ( 1 - 51795 T + 1771153398 T^{2} - 51795 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 9224640060 T^{2} + 49287451417686473558 T^{4} - 9224640060 p^{10} T^{6} + p^{20} T^{8} \)
89$D_{4}$ \( ( 1 - 37650 T + 10990453658 T^{2} - 37650 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 23390523975 T^{2} + \)\(25\!\cdots\!08\)\( T^{4} - 23390523975 p^{10} T^{6} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.069338225052385317957791620713, −7.937993507026858251609741351480, −7.78324681559379128902718192488, −7.37695836599371731146134605929, −7.20948806183889104988766593049, −7.06151764130658653886840182772, −7.04378935092252243847890706520, −6.34524284210113474762338176343, −6.11532737770200459150185844173, −5.96896880584946606066680212604, −5.78100939040502500919961371548, −5.18842814626403583143181418779, −4.76400717139725706658022006417, −4.60804313200843778532823171858, −4.45210214488369582362756230663, −3.51894398908520082493430558655, −3.51002485384486767037220434709, −3.04449121158761777072329511083, −2.77483771216783465775175960640, −2.11283251759477412050170426700, −1.93633797593448588955457164582, −1.83226387416899574484958251428, −1.65015025618872145779883879703, −0.72436155922651881703048570535, −0.40208944417240909277229837993, 0.40208944417240909277229837993, 0.72436155922651881703048570535, 1.65015025618872145779883879703, 1.83226387416899574484958251428, 1.93633797593448588955457164582, 2.11283251759477412050170426700, 2.77483771216783465775175960640, 3.04449121158761777072329511083, 3.51002485384486767037220434709, 3.51894398908520082493430558655, 4.45210214488369582362756230663, 4.60804313200843778532823171858, 4.76400717139725706658022006417, 5.18842814626403583143181418779, 5.78100939040502500919961371548, 5.96896880584946606066680212604, 6.11532737770200459150185844173, 6.34524284210113474762338176343, 7.04378935092252243847890706520, 7.06151764130658653886840182772, 7.20948806183889104988766593049, 7.37695836599371731146134605929, 7.78324681559379128902718192488, 7.937993507026858251609741351480, 8.069338225052385317957791620713

Graph of the $Z$-function along the critical line