| L(s) = 1 | + 2-s − i·3-s + 4-s − 1.26i·5-s − i·6-s − 2.94i·7-s + 8-s − 9-s − 1.26i·10-s − 3.29i·11-s − i·12-s − 3.36·13-s − 2.94i·14-s − 1.26·15-s + 16-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 0.577i·3-s + 0.5·4-s − 0.564i·5-s − 0.408i·6-s − 1.11i·7-s + 0.353·8-s − 0.333·9-s − 0.399i·10-s − 0.994i·11-s − 0.288i·12-s − 0.932·13-s − 0.787i·14-s − 0.325·15-s + 0.250·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.896 + 0.443i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.896 + 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.907044705\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.907044705\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 3 | \( 1 + iT \) |
| 17 | \( 1 \) |
| good | 5 | \( 1 + 1.26iT - 5T^{2} \) |
| 7 | \( 1 + 2.94iT - 7T^{2} \) |
| 11 | \( 1 + 3.29iT - 11T^{2} \) |
| 13 | \( 1 + 3.36T + 13T^{2} \) |
| 19 | \( 1 + 7.44T + 19T^{2} \) |
| 23 | \( 1 - 1.41iT - 23T^{2} \) |
| 29 | \( 1 - 0.522iT - 29T^{2} \) |
| 31 | \( 1 - 7.10iT - 31T^{2} \) |
| 37 | \( 1 + 0.792iT - 37T^{2} \) |
| 41 | \( 1 + 4.06iT - 41T^{2} \) |
| 43 | \( 1 + 0.867T + 43T^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 - 9.98T + 53T^{2} \) |
| 59 | \( 1 - 7.31T + 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 13.5T + 67T^{2} \) |
| 71 | \( 1 - 7.38iT - 71T^{2} \) |
| 73 | \( 1 + 5.23iT - 73T^{2} \) |
| 79 | \( 1 + 10.9iT - 79T^{2} \) |
| 83 | \( 1 + 12.3T + 83T^{2} \) |
| 89 | \( 1 + 17.3T + 89T^{2} \) |
| 97 | \( 1 + 6.22iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.679157142243481332312729116301, −8.215869786004453522213877299382, −7.09587933249449598867511629045, −6.73102741631597530741000273187, −5.66015021827044004464235696025, −4.83973476862714870273129331137, −4.00504193724180237559654060083, −3.02414521977156926856967093405, −1.79474663568171014402348298939, −0.52186634132046378823888384189,
2.24213738908307120788235706433, 2.62197127426860465597306986502, 3.95519537529711478784641222692, 4.69998676121281520758330957366, 5.46404634046350985134862120576, 6.38780569111831657835455888311, 7.02505219458175667634803461640, 8.098086336276695250892876357811, 8.897147667461682549951519932917, 9.855491044738629783815228067534