Properties

Label 2-1734-1.1-c1-0-19
Degree $2$
Conductor $1734$
Sign $1$
Analytic cond. $13.8460$
Root an. cond. $3.72102$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 4·5-s − 6-s + 2·7-s − 8-s + 9-s − 4·10-s + 12-s − 6·13-s − 2·14-s + 4·15-s + 16-s − 18-s + 4·19-s + 4·20-s + 2·21-s − 6·23-s − 24-s + 11·25-s + 6·26-s + 27-s + 2·28-s + 4·29-s − 4·30-s + 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 1.26·10-s + 0.288·12-s − 1.66·13-s − 0.534·14-s + 1.03·15-s + 1/4·16-s − 0.235·18-s + 0.917·19-s + 0.894·20-s + 0.436·21-s − 1.25·23-s − 0.204·24-s + 11/5·25-s + 1.17·26-s + 0.192·27-s + 0.377·28-s + 0.742·29-s − 0.730·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(13.8460\)
Root analytic conductor: \(3.72102\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1734,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.293350815\)
\(L(\frac12)\) \(\approx\) \(2.293350815\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.522141410579076542625431061009, −8.623210362724267034247608731207, −7.84253913019476823710858358599, −7.10043852506497274232713842564, −6.15744346307609821396804060542, −5.34777681077972405320527300661, −4.49371969105134698855653078527, −2.75000607216763176095328952178, −2.25996527018388001879662209200, −1.24659789595230381621816494252, 1.24659789595230381621816494252, 2.25996527018388001879662209200, 2.75000607216763176095328952178, 4.49371969105134698855653078527, 5.34777681077972405320527300661, 6.15744346307609821396804060542, 7.10043852506497274232713842564, 7.84253913019476823710858358599, 8.623210362724267034247608731207, 9.522141410579076542625431061009

Graph of the $Z$-function along the critical line