Properties

Label 2-12e3-1.1-c3-0-5
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11.4·5-s − 29.8·7-s + 66.2·11-s − 39.8·13-s − 107.·17-s − 70.3·19-s − 6.91·23-s + 5.33·25-s + 36.6·29-s − 231.·31-s + 340.·35-s − 36.8·37-s − 429.·41-s + 74.3·43-s − 52.5·47-s + 546.·49-s + 288.·53-s − 756.·55-s − 783.·59-s − 439.·61-s + 454.·65-s + 218.·67-s − 790.·71-s + 1.09e3·73-s − 1.97e3·77-s + 439.·79-s − 50.8·83-s + ⋯
L(s)  = 1  − 1.02·5-s − 1.61·7-s + 1.81·11-s − 0.849·13-s − 1.53·17-s − 0.849·19-s − 0.0627·23-s + 0.0426·25-s + 0.234·29-s − 1.34·31-s + 1.64·35-s − 0.163·37-s − 1.63·41-s + 0.263·43-s − 0.163·47-s + 1.59·49-s + 0.746·53-s − 1.85·55-s − 1.72·59-s − 0.921·61-s + 0.867·65-s + 0.398·67-s − 1.32·71-s + 1.76·73-s − 2.92·77-s + 0.626·79-s − 0.0672·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4140943927\)
\(L(\frac12)\) \(\approx\) \(0.4140943927\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 11.4T + 125T^{2} \)
7 \( 1 + 29.8T + 343T^{2} \)
11 \( 1 - 66.2T + 1.33e3T^{2} \)
13 \( 1 + 39.8T + 2.19e3T^{2} \)
17 \( 1 + 107.T + 4.91e3T^{2} \)
19 \( 1 + 70.3T + 6.85e3T^{2} \)
23 \( 1 + 6.91T + 1.21e4T^{2} \)
29 \( 1 - 36.6T + 2.43e4T^{2} \)
31 \( 1 + 231.T + 2.97e4T^{2} \)
37 \( 1 + 36.8T + 5.06e4T^{2} \)
41 \( 1 + 429.T + 6.89e4T^{2} \)
43 \( 1 - 74.3T + 7.95e4T^{2} \)
47 \( 1 + 52.5T + 1.03e5T^{2} \)
53 \( 1 - 288.T + 1.48e5T^{2} \)
59 \( 1 + 783.T + 2.05e5T^{2} \)
61 \( 1 + 439.T + 2.26e5T^{2} \)
67 \( 1 - 218.T + 3.00e5T^{2} \)
71 \( 1 + 790.T + 3.57e5T^{2} \)
73 \( 1 - 1.09e3T + 3.89e5T^{2} \)
79 \( 1 - 439.T + 4.93e5T^{2} \)
83 \( 1 + 50.8T + 5.71e5T^{2} \)
89 \( 1 + 719.T + 7.04e5T^{2} \)
97 \( 1 + 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.143179248185738295427713465378, −8.269347125395430467440622198152, −7.00184899083052613635432275991, −6.81853636503424890198392911940, −5.97318971595086120274068786563, −4.53251159622340434294618952189, −3.91536138503863477930811280184, −3.19054034421037702907127306856, −1.92172927318510636008418674698, −0.29031197953700373773446657125, 0.29031197953700373773446657125, 1.92172927318510636008418674698, 3.19054034421037702907127306856, 3.91536138503863477930811280184, 4.53251159622340434294618952189, 5.97318971595086120274068786563, 6.81853636503424890198392911940, 7.00184899083052613635432275991, 8.269347125395430467440622198152, 9.143179248185738295427713465378

Graph of the $Z$-function along the critical line