Properties

Label 8-12e12-1.1-c2e4-0-23
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $4.91490\times 10^{6}$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·17-s + 76·25-s + 192·41-s + 194·49-s + 196·73-s − 264·89-s + 428·97-s − 600·113-s + 116·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 670·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 1.41·17-s + 3.03·25-s + 4.68·41-s + 3.95·49-s + 2.68·73-s − 2.96·89-s + 4.41·97-s − 5.30·113-s + 0.958·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.96·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(4.91490\times 10^{6}\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(10.23598460\)
\(L(\frac12)\) \(\approx\) \(10.23598460\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 38 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 97 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 58 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 335 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 719 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 158 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1250 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1726 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2375 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 3266 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 62 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 3266 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 5990 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 5567 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 5303 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7778 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 49 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 5593 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 13586 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 66 T + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 107 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.53602609728570712747593987695, −6.28816077400684475032079229916, −5.95208752329055444344984101525, −5.82677101645902832071840530885, −5.56637800696600782595514513315, −5.30252508903341195663936554887, −5.28121531069069437291103261866, −4.97685686849470007496301557249, −4.61599650135679255199978754908, −4.26369006228061743963224115345, −4.17290698651573591866608294349, −4.14123059712185716588148786618, −4.13247335340617096123584991567, −3.44954046010225112505127528949, −3.12417863571975888186224830844, −2.95932528268430346684067756955, −2.86370323806967105917714288126, −2.32923136887219548673528851126, −2.30427890343271921586680628333, −2.13184933974086871220873150328, −1.63739706059492798699868198898, −1.14710340769354465086855308218, −0.78573954417871106432176824626, −0.63726281208250494753165940225, −0.56179982159950396696951562158, 0.56179982159950396696951562158, 0.63726281208250494753165940225, 0.78573954417871106432176824626, 1.14710340769354465086855308218, 1.63739706059492798699868198898, 2.13184933974086871220873150328, 2.30427890343271921586680628333, 2.32923136887219548673528851126, 2.86370323806967105917714288126, 2.95932528268430346684067756955, 3.12417863571975888186224830844, 3.44954046010225112505127528949, 4.13247335340617096123584991567, 4.14123059712185716588148786618, 4.17290698651573591866608294349, 4.26369006228061743963224115345, 4.61599650135679255199978754908, 4.97685686849470007496301557249, 5.28121531069069437291103261866, 5.30252508903341195663936554887, 5.56637800696600782595514513315, 5.82677101645902832071840530885, 5.95208752329055444344984101525, 6.28816077400684475032079229916, 6.53602609728570712747593987695

Graph of the $Z$-function along the critical line