Properties

Label 8-12e12-1.1-c1e4-0-26
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $36247.9$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3·7-s + 2·11-s + 5·13-s + 10·17-s + 14·19-s − 5·23-s + 2·25-s + 3·29-s + 7·31-s + 3·35-s − 12·37-s − 12·41-s − 8·43-s − 3·47-s + 8·49-s − 20·53-s + 2·55-s + 14·59-s − 61-s + 5·65-s − 4·67-s − 16·71-s − 14·73-s + 6·77-s − 7·79-s + 25·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.13·7-s + 0.603·11-s + 1.38·13-s + 2.42·17-s + 3.21·19-s − 1.04·23-s + 2/5·25-s + 0.557·29-s + 1.25·31-s + 0.507·35-s − 1.97·37-s − 1.87·41-s − 1.21·43-s − 0.437·47-s + 8/7·49-s − 2.74·53-s + 0.269·55-s + 1.82·59-s − 0.128·61-s + 0.620·65-s − 0.488·67-s − 1.89·71-s − 1.63·73-s + 0.683·77-s − 0.787·79-s + 2.74·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(36247.9\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.572991797\)
\(L(\frac12)\) \(\approx\) \(9.572991797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4\times C_2$ \( 1 - T - T^{2} + 8 T^{3} - 26 T^{4} + 8 p T^{5} - p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 3 T + T^{2} + 18 T^{3} - 48 T^{4} + 18 p T^{5} + p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 5 T + T^{2} + 10 T^{3} + 82 T^{4} + 10 p T^{5} + p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 5 T + 32 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 7 T + 42 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 5 T - 19 T^{2} - 10 T^{3} + 832 T^{4} - 10 p T^{5} - 19 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 3 T - 43 T^{2} + 18 T^{3} + 1602 T^{4} + 18 p T^{5} - 43 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 7 T - 17 T^{2} - 28 T^{3} + 1876 T^{4} - 28 p T^{5} - 17 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 12 T + 59 T^{2} + 36 T^{3} - 360 T^{4} + 36 p T^{5} + 59 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 8 T - 5 T^{2} - 136 T^{3} + 160 T^{4} - 136 p T^{5} - 5 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 3 T - 79 T^{2} - 18 T^{3} + 5112 T^{4} - 18 p T^{5} - 79 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 10 T + 98 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 7 T - 10 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + T - 113 T^{2} - 8 T^{3} + 9214 T^{4} - 8 p T^{5} - 113 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 4 T - 89 T^{2} - 116 T^{3} + 5464 T^{4} - 116 p T^{5} - 89 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 + 7 T + 84 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 7 T - 113 T^{2} + 28 T^{3} + 16132 T^{4} + 28 p T^{5} - 113 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 25 T + 311 T^{2} - 3700 T^{3} + 39832 T^{4} - 3700 p T^{5} + 311 p^{2} T^{6} - 25 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
97$D_4\times C_2$ \( 1 - 8 T - 113 T^{2} + 136 T^{3} + 15712 T^{4} + 136 p T^{5} - 113 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.63977242367379124203311791472, −6.39225880601927591407317536053, −6.33174557438577982036751472002, −5.79957238504614618419366232888, −5.61558287306563807017637004879, −5.54206363425079465280401965759, −5.47914956472277432614705219304, −5.31756264298255985854964911085, −4.83493211487327447488618400362, −4.77454906781457827914668506398, −4.55411492622459458528816860173, −4.12672861421845498903483061222, −4.09711405489823836825393024398, −3.48688238497947763124654640055, −3.40079407867030454196303086427, −3.29083228647024529996166874760, −3.17692316946572100742291090213, −2.73358302946914140227990174579, −2.66148492171291933269431175891, −1.69579933663929288273973558451, −1.59947400193412848163765467526, −1.57649393294833677303553009922, −1.51796376350768886029042874634, −0.76142391979438359876843229339, −0.66204148524340279114253336402, 0.66204148524340279114253336402, 0.76142391979438359876843229339, 1.51796376350768886029042874634, 1.57649393294833677303553009922, 1.59947400193412848163765467526, 1.69579933663929288273973558451, 2.66148492171291933269431175891, 2.73358302946914140227990174579, 3.17692316946572100742291090213, 3.29083228647024529996166874760, 3.40079407867030454196303086427, 3.48688238497947763124654640055, 4.09711405489823836825393024398, 4.12672861421845498903483061222, 4.55411492622459458528816860173, 4.77454906781457827914668506398, 4.83493211487327447488618400362, 5.31756264298255985854964911085, 5.47914956472277432614705219304, 5.54206363425079465280401965759, 5.61558287306563807017637004879, 5.79957238504614618419366232888, 6.33174557438577982036751472002, 6.39225880601927591407317536053, 6.63977242367379124203311791472

Graph of the $Z$-function along the critical line