Properties

Label 8-12e12-1.1-c1e4-0-13
Degree $8$
Conductor $8.916\times 10^{12}$
Sign $1$
Analytic cond. $36247.9$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s + 4·25-s + 4·37-s + 22·49-s − 44·61-s − 4·73-s − 52·97-s + 40·109-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 42·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.10·13-s + 4/5·25-s + 0.657·37-s + 22/7·49-s − 5.63·61-s − 0.468·73-s − 5.27·97-s + 3.83·109-s + 4/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(36247.9\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.726203847\)
\(L(\frac12)\) \(\approx\) \(2.726203847\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 11 T + p T^{2} )^{4} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 155 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 13 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.78223786931276240965669413526, −6.41317143934561923967195591340, −6.02076275666442767918391649765, −5.93789057309032941434991731186, −5.88042799431600256309065630045, −5.68931335684947911323347140921, −5.53748269821118256482051352962, −5.01076945464448825643268020962, −4.82231514509249154918294601857, −4.69544931676827314188699924549, −4.45147334543587499772078685744, −4.25742208313532796767268826147, −4.02627562760468768915380182217, −3.70452678906309732307841892489, −3.45274099738324577098361050550, −3.30478726462640934107527356211, −2.94848128629919209385026601224, −2.71807492369847361217513547802, −2.44576792246002894164052230728, −2.31246860715987068398698176048, −1.63517492241153718724265220868, −1.44622892923630363541304710342, −1.34945318674062353368035485073, −0.789782212133105080676238111218, −0.33457710453920027028744614369, 0.33457710453920027028744614369, 0.789782212133105080676238111218, 1.34945318674062353368035485073, 1.44622892923630363541304710342, 1.63517492241153718724265220868, 2.31246860715987068398698176048, 2.44576792246002894164052230728, 2.71807492369847361217513547802, 2.94848128629919209385026601224, 3.30478726462640934107527356211, 3.45274099738324577098361050550, 3.70452678906309732307841892489, 4.02627562760468768915380182217, 4.25742208313532796767268826147, 4.45147334543587499772078685744, 4.69544931676827314188699924549, 4.82231514509249154918294601857, 5.01076945464448825643268020962, 5.53748269821118256482051352962, 5.68931335684947911323347140921, 5.88042799431600256309065630045, 5.93789057309032941434991731186, 6.02076275666442767918391649765, 6.41317143934561923967195591340, 6.78223786931276240965669413526

Graph of the $Z$-function along the critical line