Properties

Label 4-12e6-1.1-c1e2-0-29
Degree $4$
Conductor $2985984$
Sign $1$
Analytic cond. $190.388$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·11-s − 8·13-s − 12·23-s + 3·25-s − 20·37-s − 20·47-s − 49-s + 8·59-s + 16·71-s − 6·73-s − 18·83-s + 14·97-s − 34·107-s − 4·109-s − 19·121-s + 127-s + 131-s + 137-s + 139-s + 16·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + ⋯
L(s)  = 1  − 0.603·11-s − 2.21·13-s − 2.50·23-s + 3/5·25-s − 3.28·37-s − 2.91·47-s − 1/7·49-s + 1.04·59-s + 1.89·71-s − 0.702·73-s − 1.97·83-s + 1.42·97-s − 3.28·107-s − 0.383·109-s − 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.33·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2985984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2985984\)    =    \(2^{12} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(190.388\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2985984,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 93 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.249179124196987575960850906124, −8.550660249015272561441967271041, −8.242268402615046452556269929050, −8.110799401224723554800218536078, −7.49457376896425652751747497860, −7.10767312475555086792362137668, −6.87123009384917670787129941289, −6.36418245293273840739389269451, −5.87467154560491979957505767945, −5.25852477156993402855956031442, −4.96942438208372425720561034500, −4.87886908545961866961012833648, −3.91889873088688425934273734374, −3.78573298617316212330687321750, −2.98790367594008837561174575716, −2.57331871558981163156946589221, −1.98390570863539637619059405532, −1.58214941398350325894069136048, 0, 0, 1.58214941398350325894069136048, 1.98390570863539637619059405532, 2.57331871558981163156946589221, 2.98790367594008837561174575716, 3.78573298617316212330687321750, 3.91889873088688425934273734374, 4.87886908545961866961012833648, 4.96942438208372425720561034500, 5.25852477156993402855956031442, 5.87467154560491979957505767945, 6.36418245293273840739389269451, 6.87123009384917670787129941289, 7.10767312475555086792362137668, 7.49457376896425652751747497860, 8.110799401224723554800218536078, 8.242268402615046452556269929050, 8.550660249015272561441967271041, 9.249179124196987575960850906124

Graph of the $Z$-function along the critical line