Properties

Label 8-171e4-1.1-c0e4-0-0
Degree $8$
Conductor $855036081$
Sign $1$
Analytic cond. $5.30411\times 10^{-5}$
Root an. cond. $0.292130$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 2·7-s − 2·9-s + 2·11-s + 16-s + 2·20-s + 2·23-s + 3·25-s + 2·28-s + 4·35-s + 2·36-s − 2·43-s − 2·44-s + 4·45-s − 2·47-s + 3·49-s − 4·55-s + 2·61-s + 4·63-s − 2·64-s − 4·77-s − 2·80-s + 3·81-s + 2·83-s − 2·92-s − 4·99-s + ⋯
L(s)  = 1  − 4-s − 2·5-s − 2·7-s − 2·9-s + 2·11-s + 16-s + 2·20-s + 2·23-s + 3·25-s + 2·28-s + 4·35-s + 2·36-s − 2·43-s − 2·44-s + 4·45-s − 2·47-s + 3·49-s − 4·55-s + 2·61-s + 4·63-s − 2·64-s − 4·77-s − 2·80-s + 3·81-s + 2·83-s − 2·92-s − 4·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(5.30411\times 10^{-5}\)
Root analytic conductor: \(0.292130\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1025405157\)
\(L(\frac12)\) \(\approx\) \(0.1025405157\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
13$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2$ \( ( 1 + T^{2} )^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.401579418067524432331958793208, −9.261724102180448573909808369698, −9.109533802221884348670597627972, −8.837033921878308270395272134693, −8.603510286675660809996359554799, −8.336196475863634597614208489047, −8.146453088111622490090656980144, −7.88754360637046314271475907853, −7.22636910134097705140984556518, −7.20151037666662089677640548508, −6.88567482910557282915102155226, −6.37343530522119538900024165060, −6.32975189902255865903931757235, −6.29119669582383274707931373042, −5.43205268266639321517703319445, −5.25063307880484960493204905994, −5.06485414514885459340030530931, −4.49483680603590198979315620537, −4.23496781639815852337266858220, −3.63948583156517302384840049644, −3.50118570811506833453859075622, −3.40231692162563963078878105280, −2.99343008038472063889121925162, −2.54179315234813575415517087046, −1.13558389195596783823694363533, 1.13558389195596783823694363533, 2.54179315234813575415517087046, 2.99343008038472063889121925162, 3.40231692162563963078878105280, 3.50118570811506833453859075622, 3.63948583156517302384840049644, 4.23496781639815852337266858220, 4.49483680603590198979315620537, 5.06485414514885459340030530931, 5.25063307880484960493204905994, 5.43205268266639321517703319445, 6.29119669582383274707931373042, 6.32975189902255865903931757235, 6.37343530522119538900024165060, 6.88567482910557282915102155226, 7.20151037666662089677640548508, 7.22636910134097705140984556518, 7.88754360637046314271475907853, 8.146453088111622490090656980144, 8.336196475863634597614208489047, 8.603510286675660809996359554799, 8.837033921878308270395272134693, 9.109533802221884348670597627972, 9.261724102180448573909808369698, 9.401579418067524432331958793208

Graph of the $Z$-function along the critical line