Properties

Label 2-17-17.14-c4-0-0
Degree $2$
Conductor $17$
Sign $-0.734 - 0.678i$
Analytic cond. $1.75728$
Root an. cond. $1.32562$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.17 + 1.31i)2-s + (−0.505 + 2.54i)3-s + (−2.98 + 2.98i)4-s + (−30.6 + 20.4i)5-s + (−1.73 − 8.73i)6-s + (18.6 + 12.4i)7-s + (26.5 − 64.1i)8-s + (68.6 + 28.4i)9-s + (70.2 − 105. i)10-s + (−80.7 + 16.0i)11-s + (−6.07 − 9.09i)12-s + (65.4 + 65.4i)13-s + (−75.5 − 15.0i)14-s + (−36.5 − 88.2i)15-s + 170. i·16-s + (−164. + 237. i)17-s + ⋯
L(s)  = 1  + (−0.792 + 0.328i)2-s + (−0.0562 + 0.282i)3-s + (−0.186 + 0.186i)4-s + (−1.22 + 0.818i)5-s + (−0.0482 − 0.242i)6-s + (0.381 + 0.254i)7-s + (0.414 − 1.00i)8-s + (0.847 + 0.350i)9-s + (0.702 − 1.05i)10-s + (−0.667 + 0.132i)11-s + (−0.0422 − 0.0631i)12-s + (0.387 + 0.387i)13-s + (−0.385 − 0.0767i)14-s + (−0.162 − 0.392i)15-s + 0.666i·16-s + (−0.569 + 0.822i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.734 - 0.678i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.734 - 0.678i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17\)
Sign: $-0.734 - 0.678i$
Analytic conductor: \(1.75728\)
Root analytic conductor: \(1.32562\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{17} (14, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 17,\ (\ :2),\ -0.734 - 0.678i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.198833 + 0.508715i\)
\(L(\frac12)\) \(\approx\) \(0.198833 + 0.508715i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + (164. - 237. i)T \)
good2 \( 1 + (3.17 - 1.31i)T + (11.3 - 11.3i)T^{2} \)
3 \( 1 + (0.505 - 2.54i)T + (-74.8 - 30.9i)T^{2} \)
5 \( 1 + (30.6 - 20.4i)T + (239. - 577. i)T^{2} \)
7 \( 1 + (-18.6 - 12.4i)T + (918. + 2.21e3i)T^{2} \)
11 \( 1 + (80.7 - 16.0i)T + (1.35e4 - 5.60e3i)T^{2} \)
13 \( 1 + (-65.4 - 65.4i)T + 2.85e4iT^{2} \)
19 \( 1 + (-97.7 + 40.4i)T + (9.21e4 - 9.21e4i)T^{2} \)
23 \( 1 + (-106. - 537. i)T + (-2.58e5 + 1.07e5i)T^{2} \)
29 \( 1 + (786. + 1.17e3i)T + (-2.70e5 + 6.53e5i)T^{2} \)
31 \( 1 + (-1.78e3 - 354. i)T + (8.53e5 + 3.53e5i)T^{2} \)
37 \( 1 + (-2.77 + 13.9i)T + (-1.73e6 - 7.17e5i)T^{2} \)
41 \( 1 + (-4.12 - 2.75i)T + (1.08e6 + 2.61e6i)T^{2} \)
43 \( 1 + (1.17e3 + 484. i)T + (2.41e6 + 2.41e6i)T^{2} \)
47 \( 1 + (-2.31e3 - 2.31e3i)T + 4.87e6iT^{2} \)
53 \( 1 + (-3.75e3 + 1.55e3i)T + (5.57e6 - 5.57e6i)T^{2} \)
59 \( 1 + (-1.87e3 + 4.53e3i)T + (-8.56e6 - 8.56e6i)T^{2} \)
61 \( 1 + (767. - 1.14e3i)T + (-5.29e6 - 1.27e7i)T^{2} \)
67 \( 1 - 6.12e3iT - 2.01e7T^{2} \)
71 \( 1 + (1.10e3 - 5.55e3i)T + (-2.34e7 - 9.72e6i)T^{2} \)
73 \( 1 + (6.11e3 - 4.08e3i)T + (1.08e7 - 2.62e7i)T^{2} \)
79 \( 1 + (1.33e3 - 265. i)T + (3.59e7 - 1.49e7i)T^{2} \)
83 \( 1 + (-1.80e3 - 4.36e3i)T + (-3.35e7 + 3.35e7i)T^{2} \)
89 \( 1 + (-5.37e3 + 5.37e3i)T - 6.27e7iT^{2} \)
97 \( 1 + (483. + 723. i)T + (-3.38e7 + 8.17e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.69400614412518729065415323455, −17.47284328565801582409117223525, −15.88059029978838111992837739748, −15.31033082360402065386936875285, −13.25758888302205104233352424885, −11.48447573692504095870022858421, −10.10836464567477248979118747625, −8.273027580290593777159945921689, −7.20729626139803974778764658325, −4.09342913201418063237680625529, 0.73269144160509988761913603252, 4.67680407619971430610147404596, 7.64038889003522274962881568369, 8.823410736020819845449578640162, 10.54919171163016159933114431548, 11.94404622031031074404416611500, 13.38953551881684708729568299470, 15.27546205348362155260259253138, 16.47726658767781843077396226427, 18.02589129501753476235922977162

Graph of the $Z$-function along the critical line