Properties

Label 2-17-17.12-c4-0-1
Degree $2$
Conductor $17$
Sign $0.832 + 0.554i$
Analytic cond. $1.75728$
Root an. cond. $1.32562$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.308 − 0.743i)2-s + (3.07 − 2.05i)3-s + (10.8 − 10.8i)4-s + (11.5 + 2.29i)5-s + (−2.47 − 1.65i)6-s + (−14.9 + 2.96i)7-s + (−23.3 − 9.66i)8-s + (−25.7 + 62.2i)9-s + (−1.84 − 9.27i)10-s + (−65.8 + 98.5i)11-s + (11.0 − 55.6i)12-s + (−22.6 − 22.6i)13-s + (6.80 + 10.1i)14-s + (40.0 − 16.6i)15-s − 225. i·16-s + (262. + 121. i)17-s + ⋯
L(s)  = 1  + (−0.0770 − 0.185i)2-s + (0.341 − 0.228i)3-s + (0.678 − 0.678i)4-s + (0.460 + 0.0916i)5-s + (−0.0687 − 0.0459i)6-s + (−0.304 + 0.0605i)7-s + (−0.364 − 0.150i)8-s + (−0.318 + 0.768i)9-s + (−0.0184 − 0.0927i)10-s + (−0.544 + 0.814i)11-s + (0.0768 − 0.386i)12-s + (−0.133 − 0.133i)13-s + (0.0347 + 0.0519i)14-s + (0.178 − 0.0738i)15-s − 0.880i·16-s + (0.906 + 0.421i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17\)
Sign: $0.832 + 0.554i$
Analytic conductor: \(1.75728\)
Root analytic conductor: \(1.32562\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{17} (12, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 17,\ (\ :2),\ 0.832 + 0.554i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.33519 - 0.403845i\)
\(L(\frac12)\) \(\approx\) \(1.33519 - 0.403845i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + (-262. - 121. i)T \)
good2 \( 1 + (0.308 + 0.743i)T + (-11.3 + 11.3i)T^{2} \)
3 \( 1 + (-3.07 + 2.05i)T + (30.9 - 74.8i)T^{2} \)
5 \( 1 + (-11.5 - 2.29i)T + (577. + 239. i)T^{2} \)
7 \( 1 + (14.9 - 2.96i)T + (2.21e3 - 918. i)T^{2} \)
11 \( 1 + (65.8 - 98.5i)T + (-5.60e3 - 1.35e4i)T^{2} \)
13 \( 1 + (22.6 + 22.6i)T + 2.85e4iT^{2} \)
19 \( 1 + (30.7 + 74.1i)T + (-9.21e4 + 9.21e4i)T^{2} \)
23 \( 1 + (-1.60 - 1.07i)T + (1.07e5 + 2.58e5i)T^{2} \)
29 \( 1 + (84.4 - 424. i)T + (-6.53e5 - 2.70e5i)T^{2} \)
31 \( 1 + (601. + 900. i)T + (-3.53e5 + 8.53e5i)T^{2} \)
37 \( 1 + (-1.67e3 + 1.11e3i)T + (7.17e5 - 1.73e6i)T^{2} \)
41 \( 1 + (-1.48e3 + 294. i)T + (2.61e6 - 1.08e6i)T^{2} \)
43 \( 1 + (-1.13e3 + 2.74e3i)T + (-2.41e6 - 2.41e6i)T^{2} \)
47 \( 1 + (1.44e3 + 1.44e3i)T + 4.87e6iT^{2} \)
53 \( 1 + (-1.39e3 - 3.37e3i)T + (-5.57e6 + 5.57e6i)T^{2} \)
59 \( 1 + (5.53e3 + 2.29e3i)T + (8.56e6 + 8.56e6i)T^{2} \)
61 \( 1 + (-1.02e3 - 5.16e3i)T + (-1.27e7 + 5.29e6i)T^{2} \)
67 \( 1 + 23.3iT - 2.01e7T^{2} \)
71 \( 1 + (-5.73e3 + 3.82e3i)T + (9.72e6 - 2.34e7i)T^{2} \)
73 \( 1 + (-7.28e3 - 1.44e3i)T + (2.62e7 + 1.08e7i)T^{2} \)
79 \( 1 + (4.61e3 - 6.91e3i)T + (-1.49e7 - 3.59e7i)T^{2} \)
83 \( 1 + (1.84e3 - 763. i)T + (3.35e7 - 3.35e7i)T^{2} \)
89 \( 1 + (5.87e3 - 5.87e3i)T - 6.27e7iT^{2} \)
97 \( 1 + (976. - 4.90e3i)T + (-8.17e7 - 3.38e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.28942935939114509736020019117, −16.67362399563207583374917176442, −15.28414572441996449541967323817, −14.10329460597852557342045410377, −12.60902397031605037825617806506, −10.86028184967935191860712491452, −9.679437376757765960554703533125, −7.53822261888031778247770303545, −5.68435135896524245054153391705, −2.27751368656430920491997255089, 3.15789128127361071669024052562, 6.14026143009991549931471744038, 7.993052885809533750206876496167, 9.574072651639399773506906558967, 11.41465350440214573001339965670, 12.83926820899062588985827468307, 14.39415083961466042918842038480, 15.81911503882573407008596622388, 16.81304161633545229198519484827, 18.09029788952499830886595494987

Graph of the $Z$-function along the critical line