Properties

Label 6-1690e3-1.1-c1e3-0-0
Degree $6$
Conductor $4826809000$
Sign $1$
Analytic cond. $2457.48$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3-s + 6·4-s + 3·5-s + 3·6-s − 2·7-s − 10·8-s − 6·9-s − 9·10-s + 13·11-s − 6·12-s + 6·14-s − 3·15-s + 15·16-s − 17-s + 18·18-s + 3·19-s + 18·20-s + 2·21-s − 39·22-s − 10·23-s + 10·24-s + 6·25-s + 8·27-s − 12·28-s − 8·29-s + 9·30-s + ⋯
L(s)  = 1  − 2.12·2-s − 0.577·3-s + 3·4-s + 1.34·5-s + 1.22·6-s − 0.755·7-s − 3.53·8-s − 2·9-s − 2.84·10-s + 3.91·11-s − 1.73·12-s + 1.60·14-s − 0.774·15-s + 15/4·16-s − 0.242·17-s + 4.24·18-s + 0.688·19-s + 4.02·20-s + 0.436·21-s − 8.31·22-s − 2.08·23-s + 2.04·24-s + 6/5·25-s + 1.53·27-s − 2.26·28-s − 1.48·29-s + 1.64·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 5^{3} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(2457.48\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 5^{3} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.296493613\)
\(L(\frac12)\) \(\approx\) \(1.296493613\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( ( 1 + T )^{3} \)
5$C_1$ \( ( 1 - T )^{3} \)
13 \( 1 \)
good3$A_4\times C_2$ \( 1 + T + 7 T^{2} + 5 T^{3} + 7 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \) 3.3.b_h_f
7$A_4\times C_2$ \( 1 + 2 T + 13 T^{2} + 20 T^{3} + 13 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.7.c_n_u
11$A_4\times C_2$ \( 1 - 13 T + 87 T^{2} - 357 T^{3} + 87 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \) 3.11.an_dj_ant
17$A_4\times C_2$ \( 1 + T + 35 T^{2} + 5 T^{3} + 35 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \) 3.17.b_bj_f
19$A_4\times C_2$ \( 1 - 3 T + 53 T^{2} - 115 T^{3} + 53 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \) 3.19.ad_cb_ael
23$A_4\times C_2$ \( 1 + 10 T + 93 T^{2} + 468 T^{3} + 93 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) 3.23.k_dp_sa
29$A_4\times C_2$ \( 1 + 8 T + 99 T^{2} + 456 T^{3} + 99 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \) 3.29.i_dv_ro
31$A_4\times C_2$ \( 1 - 4 T + 33 T^{2} - 16 T^{3} + 33 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \) 3.31.ae_bh_aq
37$A_4\times C_2$ \( 1 - 6 T + 39 T^{2} - 228 T^{3} + 39 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \) 3.37.ag_bn_aiu
41$A_4\times C_2$ \( 1 - 19 T + 213 T^{2} - 1671 T^{3} + 213 p T^{4} - 19 p^{2} T^{5} + p^{3} T^{6} \) 3.41.at_if_acmh
43$A_4\times C_2$ \( 1 - 5 T - 5 T^{2} + 409 T^{3} - 5 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \) 3.43.af_af_pt
47$A_4\times C_2$ \( 1 - 8 T + 97 T^{2} - 744 T^{3} + 97 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \) 3.47.ai_dt_abcq
53$A_4\times C_2$ \( 1 + 8 T + 59 T^{2} + 280 T^{3} + 59 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \) 3.53.i_ch_ku
59$A_4\times C_2$ \( 1 - 5 T + 43 T^{2} + 249 T^{3} + 43 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \) 3.59.af_br_jp
61$A_4\times C_2$ \( 1 + 8 T + 83 T^{2} + 408 T^{3} + 83 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \) 3.61.i_df_ps
67$A_4\times C_2$ \( 1 - T + 59 T^{2} - 693 T^{3} + 59 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \) 3.67.ab_ch_abar
71$A_4\times C_2$ \( 1 - 12 T + 177 T^{2} - 1376 T^{3} + 177 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \) 3.71.am_gv_acay
73$A_4\times C_2$ \( 1 - 5 T + 113 T^{2} - 87 T^{3} + 113 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \) 3.73.af_ej_adj
79$A_4\times C_2$ \( 1 - 2 T + 173 T^{2} - 420 T^{3} + 173 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.79.ac_gr_aqe
83$A_4\times C_2$ \( 1 + 7 T + 151 T^{2} + 1365 T^{3} + 151 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \) 3.83.h_fv_can
89$A_4\times C_2$ \( 1 - 21 T + 365 T^{2} - 3689 T^{3} + 365 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} \) 3.89.av_ob_aflx
97$A_4\times C_2$ \( 1 - 21 T + 431 T^{2} - 4361 T^{3} + 431 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} \) 3.97.av_qp_aglt
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619380440912888316975207591406, −7.984506507882595600222453434762, −7.78954254065772758489002267389, −7.68131644915018153669583701310, −7.35217807637898230702457402098, −6.73085890325591600980585914310, −6.53060448619932686868603863775, −6.40518576411704686942637735988, −6.36244517937276719523944557947, −6.09214815339228081427586789108, −5.67350476282372621730028534309, −5.51633917188150603268381208881, −5.49724822207970112313795540104, −4.36508051411333728301427395763, −4.36273811174029108111465395417, −4.12160487510446817401073981008, −3.30842072805832387480638305107, −3.24764000908496639215385865803, −3.13191236416241236659605913406, −2.19263776376768628408771082719, −2.03996075651733813677770914646, −2.03832017204313545327254565069, −1.21425702555452416653422497727, −0.793174046906958392505955672407, −0.60036263492667065419793626306, 0.60036263492667065419793626306, 0.793174046906958392505955672407, 1.21425702555452416653422497727, 2.03832017204313545327254565069, 2.03996075651733813677770914646, 2.19263776376768628408771082719, 3.13191236416241236659605913406, 3.24764000908496639215385865803, 3.30842072805832387480638305107, 4.12160487510446817401073981008, 4.36273811174029108111465395417, 4.36508051411333728301427395763, 5.49724822207970112313795540104, 5.51633917188150603268381208881, 5.67350476282372621730028534309, 6.09214815339228081427586789108, 6.36244517937276719523944557947, 6.40518576411704686942637735988, 6.53060448619932686868603863775, 6.73085890325591600980585914310, 7.35217807637898230702457402098, 7.68131644915018153669583701310, 7.78954254065772758489002267389, 7.984506507882595600222453434762, 8.619380440912888316975207591406

Graph of the $Z$-function along the critical line