Properties

Label 4-13e4-1.1-c3e2-0-8
Degree $4$
Conductor $28561$
Sign $1$
Analytic cond. $99.4272$
Root an. cond. $3.15774$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 2·3-s − 2·4-s + 6·6-s + 24·7-s + 15·8-s + 27·9-s − 24·11-s + 4·12-s − 72·14-s − 15·16-s − 117·17-s − 81·18-s + 198·19-s − 48·21-s + 72·22-s + 78·23-s − 30·24-s + 247·25-s − 154·27-s − 48·28-s + 141·29-s + 120·32-s + 48·33-s + 351·34-s − 54·36-s + 249·37-s + ⋯
L(s)  = 1  − 1.06·2-s − 0.384·3-s − 1/4·4-s + 0.408·6-s + 1.29·7-s + 0.662·8-s + 9-s − 0.657·11-s + 0.0962·12-s − 1.37·14-s − 0.234·16-s − 1.66·17-s − 1.06·18-s + 2.39·19-s − 0.498·21-s + 0.697·22-s + 0.707·23-s − 0.255·24-s + 1.97·25-s − 1.09·27-s − 0.323·28-s + 0.902·29-s + 0.662·32-s + 0.253·33-s + 1.77·34-s − 1/4·36-s + 1.10·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28561\)    =    \(13^{4}\)
Sign: $1$
Analytic conductor: \(99.4272\)
Root analytic conductor: \(3.15774\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28561,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.106921256\)
\(L(\frac12)\) \(\approx\) \(1.106921256\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13 \( 1 \)
good2$C_2^2$ \( 1 + 3 T + 11 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
3$C_2^2$ \( 1 + 2 T - 23 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 247 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 24 T + 535 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 24 T + 1523 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 117 T + 8776 T^{2} + 117 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 198 T + 19927 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 78 T - 6083 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 141 T - 4508 T^{2} - 141 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2$ \( ( 1 - 308 T + p^{3} T^{2} )( 1 + 308 T + p^{3} T^{2} ) \)
37$C_2^2$ \( 1 - 249 T + 71320 T^{2} - 249 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 471 T + 142868 T^{2} + 471 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 104 T - 68691 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 116818 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 93 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 492 T + 286067 T^{2} - 492 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 145 T - 205956 T^{2} + 145 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 1362 T + 919111 T^{2} - 1362 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 1830 T + 1474211 T^{2} + 1830 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 567359 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 1276 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 519766 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 1692 T + 1659257 T^{2} - 1692 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 348 T + 953041 T^{2} + 348 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56419516355156520454756162022, −11.71944963089547327153897892355, −11.59275452915860328983811817983, −11.01728697458626857279640365103, −10.39028590236463935327681274345, −10.16052625422979483368065081463, −9.274941552613008166721962211635, −9.240192942577938792149626266221, −8.415194175077872610888586081850, −8.136885324681471532042815750738, −7.45683561700817193666835789616, −6.99539880623038828219996358249, −6.40917635934714065641302057123, −5.24446126832002427994338826621, −4.88911036549834203794276131516, −4.62366077445546092077662277598, −3.48454413231220453678319345641, −2.43282159643065322809981699102, −1.31414323649380026611142289833, −0.69775681349343177399839854730, 0.69775681349343177399839854730, 1.31414323649380026611142289833, 2.43282159643065322809981699102, 3.48454413231220453678319345641, 4.62366077445546092077662277598, 4.88911036549834203794276131516, 5.24446126832002427994338826621, 6.40917635934714065641302057123, 6.99539880623038828219996358249, 7.45683561700817193666835789616, 8.136885324681471532042815750738, 8.415194175077872610888586081850, 9.240192942577938792149626266221, 9.274941552613008166721962211635, 10.16052625422979483368065081463, 10.39028590236463935327681274345, 11.01728697458626857279640365103, 11.59275452915860328983811817983, 11.71944963089547327153897892355, 12.56419516355156520454756162022

Graph of the $Z$-function along the critical line